Spaces:
Sleeping
Sleeping
add requirements and app.py
Browse files- app.py +87 -0
- requirements.txt +4 -0
app.py
ADDED
|
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
+
import os
|
| 3 |
+
from sklearn.neighbors import NearestNeighbors
|
| 4 |
+
import numpy as np
|
| 5 |
+
num_nn = 20
|
| 6 |
+
import gradio as gr
|
| 7 |
+
from PIL import Image
|
| 8 |
+
|
| 9 |
+
data_root = '/dccstor/elishc1/datasets/DomainNet'
|
| 10 |
+
feat_dir = 'brad_feats'
|
| 11 |
+
domains = ['real', 'painting', 'clipart', 'sketch']
|
| 12 |
+
shots = '-1'
|
| 13 |
+
search_domain = 'all'
|
| 14 |
+
num_results_per_domain = 5
|
| 15 |
+
src_data_dict = {}
|
| 16 |
+
if search_domain == 'all':
|
| 17 |
+
for d in domains:
|
| 18 |
+
with open(os.path.join(feat_dir, f'dst_{d}_{shots}.pkl'), 'rb') as fp:
|
| 19 |
+
src_data = pickle.load(fp)
|
| 20 |
+
|
| 21 |
+
src_nn_fit = NearestNeighbors(n_neighbors=num_results_per_domain,
|
| 22 |
+
algorithm='auto', n_jobs=-1).fit(src_data[1])
|
| 23 |
+
src_data_dict[d] = (src_data,src_nn_fit)
|
| 24 |
+
else:
|
| 25 |
+
|
| 26 |
+
with open(os.path.join(feat_dir, f'dst_{search_domain}_{shots}.pkl'), 'rb') as
|
| 27 |
+
fp:
|
| 28 |
+
src_data = pickle.load(fp)
|
| 29 |
+
src_nn_fit = NearestNeighbors(n_neighbors=num_results_per_domain,
|
| 30 |
+
algorithm='auto', n_jobs=-1).fit(src_data[1])
|
| 31 |
+
src_data_dict[search_domain] = (src_data,src_nn_fit)
|
| 32 |
+
|
| 33 |
+
dst_data_dict = {}
|
| 34 |
+
for d in domains:
|
| 35 |
+
with open(os.path.join(feat_dir, f'src_{d}_{shots}.pkl'), 'rb') as fp:
|
| 36 |
+
dst_data_dict[d] = pickle.load(fp)
|
| 37 |
+
|
| 38 |
+
def query(query_index, query_domain):
|
| 39 |
+
dst_data = dst_data_dict[query_domain]
|
| 40 |
+
dst_img_path = os.path.join(data_root, dst_data[0][query_index])
|
| 41 |
+
img_paths = [dst_img_path]
|
| 42 |
+
q_cl = dst_img_path.split('/')[-2]
|
| 43 |
+
captions = [f'Query: {q_cl}']
|
| 44 |
+
for s_domain, s_data in src_data_dict.items():
|
| 45 |
+
_, top_n_matches_ids =
|
| 46 |
+
s_data[1].kneighbors(dst_data[1][query_index:query_index+1])
|
| 47 |
+
top_n_labels = s_data[0][2][top_n_matches_ids][0]
|
| 48 |
+
src_img_pths = [os.path.join(data_root, s_data[0][0][ix]) for ix in
|
| 49 |
+
top_n_matches_ids[0]]
|
| 50 |
+
img_paths += src_img_pths
|
| 51 |
+
|
| 52 |
+
for p in src_img_pths:
|
| 53 |
+
src_cl = p.split('/')[-2]
|
| 54 |
+
src_file = p.split('/')[-1]
|
| 55 |
+
captions.append(src_cl)
|
| 56 |
+
return tuple([Image.open(p) for p in img_paths])+ tuple(captions)
|
| 57 |
+
try:
|
| 58 |
+
demo.close()
|
| 59 |
+
except:
|
| 60 |
+
pass
|
| 61 |
+
demo = gr.Blocks()
|
| 62 |
+
with demo:
|
| 63 |
+
gr.Markdown('## Select Query Domain: ')
|
| 64 |
+
domain_drop = gr.Dropdown(domains)
|
| 65 |
+
# domain_select_button = gr.Button("Select Domain")
|
| 66 |
+
slider = gr.Slider(0, 1000)
|
| 67 |
+
image_button = gr.Button("Run")
|
| 68 |
+
|
| 69 |
+
gr.Markdown('# Query Image')
|
| 70 |
+
src_cap = gr.Label()
|
| 71 |
+
src_img = gr.Image()
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
out_images = []
|
| 75 |
+
out_captions = []
|
| 76 |
+
for d in domains:
|
| 77 |
+
gr.Markdown(f'# {d.title()} Domain Images')
|
| 78 |
+
with gr.Row():
|
| 79 |
+
for _ in range(num_results_per_domain):
|
| 80 |
+
with gr.Column():
|
| 81 |
+
out_captions.append(gr.Label())
|
| 82 |
+
out_images.append(gr.Image())
|
| 83 |
+
|
| 84 |
+
image_button.click(query, inputs=[slider, domain_drop],
|
| 85 |
+
outputs=[src_img]+out_images +[src_cap]+ out_captions)
|
| 86 |
+
demo.launch(share=True)
|
| 87 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.20.1
|
| 2 |
+
Pillow==8.2.0
|
| 3 |
+
scikit-learn==0.24.1
|
| 4 |
+
|