import pandas as pd class PaperList: def __init__(self) -> None: self.table = pd.read_csv("papers.csv") self._preprcess_table() self.table_header = """ Paper Authors pdf Supp arXiv GitHub HF Spaces HF Models HF Datasets """ def _preprcess_table(self) -> None: self.table["title_lowercase"] = self.table.title.str.lower() rows = [] for row in self.table.itertuples(): paper = f'{row.title}' pdf = f'pdf' supp = f'supp' if isinstance(row.supp, str) else "" arxiv = f'arXiv' if isinstance(row.arxiv, str) else "" github = f'GitHub' if isinstance(row.github, str) else "" hf_space = f'Space' if isinstance(row.hf_space, str) else "" hf_model = f'Model' if isinstance(row.hf_model, str) else "" hf_dataset = ( f'Dataset' if isinstance(row.hf_dataset, str) else "" ) new_row = f""" {paper} {row.authors} {pdf} {supp} {arxiv} {github} {hf_space} {hf_model} {hf_dataset} """ rows.append(new_row) self.table["html_table_content"] = rows def render(self, search_query: str, case_sensitive: bool, filter_names: list[str]) -> tuple[int, str]: df = self.table if search_query: if case_sensitive: df = df[df.title.str.contains(search_query)] else: df = df[df.title_lowercase.str.contains(search_query.lower())] has_supp = "Supp" in filter_names has_arxiv = "arXiv" in filter_names has_github = "GitHub" in filter_names has_hf_space = "HF Space" in filter_names has_hf_model = "HF Model" in filter_names has_hf_dataset = "HF Dataset" in filter_names df = self.filter_table(df, has_supp, has_arxiv, has_github, has_hf_space, has_hf_model, has_hf_dataset) return len(df), self.to_html(df, self.table_header) @staticmethod def filter_table( df: pd.DataFrame, has_supp: bool, has_arxiv: bool, has_github: bool, has_hf_space: bool, has_hf_model: bool, has_hf_dataset: bool, ) -> pd.DataFrame: if has_supp: df = df[~df.supp.isna()] if has_arxiv: df = df[~df.arxiv.isna()] if has_github: df = df[~df.github.isna()] if has_hf_space: df = df[~df.hf_space.isna()] if has_hf_model: df = df[~df.hf_model.isna()] if has_hf_dataset: df = df[~df.hf_dataset.isna()] return df @staticmethod def to_html(df: pd.DataFrame, table_header: str) -> str: table_data = "".join(df.html_table_content) return f""" {table_header} {table_data}
"""