Spaces:
Sleeping
Sleeping
File size: 28,377 Bytes
1b167bf 4e5d878 1b167bf 432f68e 951c395 1b167bf 951c395 ab6abb0 3e010de 432f68e 1b167bf 43f972f 1b167bf 43f972f bd1b6cf 3e010de bd1b6cf 432f68e bd1b6cf 43f972f bd1b6cf 3e010de 951c395 432f68e 951c395 bd1b6cf 951c395 432f68e 951c395 43f972f bd1b6cf 951c395 e71af4a 951c395 e71af4a 3e010de 432f68e 43f972f 432f68e e71af4a 43f972f e71af4a 43f972f e71af4a 43f972f e71af4a 43f972f e71af4a 43f972f e71af4a 3e010de bd1b6cf 43f972f 432f68e bd1b6cf 951c395 7a1615b bd1b6cf e71af4a 43f972f bd1b6cf 43f972f 1b167bf e71af4a 3e010de bd1b6cf 43f972f 432f68e bd1b6cf 3e010de e71af4a 43f972f bd1b6cf 43f972f 951c395 3e010de bd1b6cf e71af4a bd1b6cf 43f972f 432f68e 43f972f e71af4a 43f972f 3e010de 432f68e 3e010de bd1b6cf e71af4a bd1b6cf 43f972f 432f68e 43f972f e71af4a 43f972f 3e010de 432f68e 3e010de 43f972f e71af4a 48d2a37 43f972f 48d2a37 1b167bf 43f972f 432f68e 48d2a37 43f972f 1b167bf 43f972f 48d2a37 432f68e 43f972f bd1b6cf 43f972f bd1b6cf 43f972f 1b167bf 432f68e 43f972f 48d2a37 1b167bf 48d2a37 43f972f 432f68e 43f972f 48d2a37 1b167bf 432f68e 43f972f bd1b6cf 1b167bf 43f972f 432f68e 1b167bf 43f972f 432f68e 43f972f 1b167bf 48d2a37 432f68e 43f972f 1b167bf 43f972f 48d2a37 43f972f 432f68e 48d2a37 43f972f 3e010de 432f68e 48d2a37 432f68e 43f972f e71af4a 43f972f 48d2a37 43f972f 432f68e 43f972f 432f68e 43f972f e71af4a bd1b6cf 432f68e 1b167bf 43f972f 1b167bf 43f972f bd1b6cf 43f972f 1b167bf 43f972f 48d2a37 43f972f 432f68e 43f972f bd1b6cf 43f972f bd1b6cf 43f972f 1b167bf 432f68e 1b167bf 43f972f 48d2a37 1b167bf 43f972f 432f68e e71af4a 43f972f 1b167bf 432f68e 43f972f 48d2a37 43f972f 432f68e 43f972f 432f68e 43f972f 48d2a37 1b167bf 76536cf 1b167bf 432f68e 76536cf bd1b6cf 76536cf 1b167bf 76536cf 48d2a37 76536cf 432f68e 48d2a37 bd1b6cf ab6abb0 43f972f 1b167bf 432f68e bd1b6cf 3e010de f1d02c3 432f68e 1b167bf e71af4a 432f68e e71af4a 432f68e 3e010de e71af4a 432f68e e71af4a 432f68e 1b167bf f1d02c3 432f68e f1d02c3 43f972f 432f68e 3e010de e71af4a 432f68e 3e010de f1d02c3 43f972f 3e010de e71af4a 432f68e 3e010de e71af4a 432f68e e71af4a 432f68e f1d02c3 e71af4a 432f68e 3e010de 432f68e e71af4a 3e010de e71af4a 432f68e 43f972f 3e010de 432f68e e71af4a 432f68e e71af4a 432f68e e71af4a 432f68e bd1b6cf 432f68e e71af4a bd1b6cf 43f972f bd1b6cf 432f68e e71af4a 43f972f 1b167bf e71af4a 1b167bf bd1b6cf 432f68e e71af4a 432f68e bd1b6cf e71af4a bd1b6cf 43f972f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 |
import spaces
import gradio as gr
import logging
import os
import tempfile
import pandas as pd
import requests
from bs4 import BeautifulSoup
import torch
import whisper
import subprocess
from pydub import AudioSegment
import fitz # PyMuPDF
import docx
import yt_dlp
from functools import lru_cache
import gc
import time
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import traceback # For detailed error logging
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s'
)
logger = logging.getLogger(__name__)
logger.info("--- Starting App ---")
# Login to Hugging Face Hub if token is available
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
if HUGGINGFACE_TOKEN:
logger.info("HUGGINGFACE_TOKEN environment variable found.")
try:
login(token=HUGGINGFACE_TOKEN)
logger.info("Successfully logged in to Hugging Face Hub.")
except Exception as e:
logger.error(f"Failed to login to Hugging Face Hub: {e}")
logger.error(traceback.format_exc())
else:
logger.warning("HUGGINGFACE_TOKEN environment variable not set.")
class ModelManager:
_instance = None
def __new__(cls):
if cls._instance is None:
logger.info("Creating new ModelManager instance.")
cls._instance = super(ModelManager, cls).__new__(cls)
cls._instance._initialized = False
return cls._instance
def __init__(self):
if not hasattr(self, '_initialized') or not self._initialized:
logger.info("Initializing ModelManager attributes.")
self.tokenizer = None
self.model = None
self.text_pipeline = None
self.whisper_model = None
self.llm_loaded = False
self.whisper_loaded = False
self.last_used = time.time()
self.llm_loading = False
self.whisper_loading = False
self._initialized = True
def _cleanup_memory(self):
logger.info("Running garbage collection...")
collected_count = gc.collect()
logger.info(f"Garbage collected ({collected_count} objects).")
if torch.cuda.is_available():
logger.info("Clearing CUDA cache...")
torch.cuda.empty_cache()
logger.info("CUDA cache cleared.")
def reset_llm(self):
logger.info("--- Attempting to reset LLM ---")
try:
if hasattr(self, 'model') and self.model is not None: del self.model; logger.info("LLM model deleted.")
if hasattr(self, 'tokenizer') and self.tokenizer is not None: del self.tokenizer; logger.info("LLM tokenizer deleted.")
if hasattr(self, 'text_pipeline') and self.text_pipeline is not None: del self.text_pipeline; logger.info("LLM pipeline deleted.")
self.model = None; self.tokenizer = None; self.text_pipeline = None
self.llm_loaded = False
self._cleanup_memory()
logger.info("LLM components reset successfully.")
except Exception as e: logger.error(f"!!! ERROR during LLM reset: {e}"); logger.error(traceback.format_exc())
def reset_whisper(self):
logger.info("--- Attempting to reset Whisper ---")
try:
if hasattr(self, 'whisper_model') and self.whisper_model is not None: del self.whisper_model; logger.info("Whisper model deleted.")
self.whisper_model = None
self.whisper_loaded = False
self._cleanup_memory()
logger.info("Whisper component reset successfully.")
except Exception as e: logger.error(f"!!! ERROR during Whisper reset: {e}"); logger.error(traceback.format_exc())
@spaces.GPU(duration=120)
def initialize_llm(self):
logger.info("Attempting to initialize LLM.")
if self.llm_loading: logger.info("LLM initialization already in progress."); return True
if self.llm_loaded: logger.info("LLM already initialized."); self.last_used = time.time(); return True
self.llm_loading = True
logger.info("Starting LLM initialization...")
try:
MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
logger.info(f"Using LLM model: {MODEL_NAME}")
self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, use_fast=True)
if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, offload_folder="offload", offload_state_dict=True)
self.text_pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, torch_dtype=torch.float16, device_map="auto", max_length=1024)
logger.info("LLM initialized successfully.")
self.last_used = time.time(); self.llm_loaded = True; self.llm_loading = False; return True
except Exception as e: logger.error(f"!!! ERROR during LLM initialization: {e}"); logger.error(traceback.format_exc()); self.reset_llm(); self.llm_loading = False; raise
@spaces.GPU(duration=120)
def initialize_whisper(self):
logger.info("Attempting to initialize Whisper.")
if self.whisper_loading: logger.info("Whisper initialization already in progress."); return True
if self.whisper_loaded: logger.info("Whisper already initialized."); self.last_used = time.time(); return True
self.whisper_loading = True
logger.info("Starting Whisper initialization...")
try:
WHISPER_MODEL_NAME = "tiny"
self.whisper_model = whisper.load_model(WHISPER_MODEL_NAME, device="cuda" if torch.cuda.is_available() else "cpu", download_root="/tmp/whisper")
logger.info(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
self.last_used = time.time(); self.whisper_loaded = True; self.whisper_loading = False; return True
except Exception as e: logger.error(f"!!! ERROR during Whisper initialization: {e}"); logger.error(traceback.format_exc()); self.reset_whisper(); self.whisper_loading = False; raise
def check_llm_initialized(self):
logger.info("Checking if LLM is initialized.")
if not self.llm_loaded:
logger.info("LLM not initialized, attempting initialization...")
if not self.llm_loading: self.initialize_llm(); logger.info("LLM initialization completed by check_llm_initialized.")
else:
logger.info("LLM initialization already in progress. Waiting briefly.")
time.sleep(10)
if not self.llm_loaded: raise RuntimeError("LLM initialization timed out or failed after waiting.")
else: logger.info("LLM seems initialized now after waiting.")
else: logger.info("LLM was already initialized.")
self.last_used = time.time()
def check_whisper_initialized(self):
logger.info("Checking if Whisper is initialized.")
if not self.whisper_loaded:
logger.info("Whisper model not initialized, attempting initialization...")
if not self.whisper_loading: self.initialize_whisper(); logger.info("Whisper initialization completed by check_whisper_initialized.")
else:
logger.info("Whisper initialization already in progress. Waiting briefly.")
time.sleep(10)
if not self.whisper_loaded: raise RuntimeError("Whisper initialization timed out or failed after waiting.")
else: logger.info("Whisper seems initialized now after waiting.")
else: logger.info("Whisper was already initialized.")
self.last_used = time.time()
def reset_models(self, force=False):
if force: logger.info("Forcing reset of all models."); self.reset_llm(); self.reset_whisper()
# Create global model manager instance
logger.info("Creating global ModelManager instance.")
model_manager = ModelManager()
# --- Functions: download_social_media_video, convert_video_to_audio, etc. ---
# --- Kept exactly the same as the previous full version ---
@lru_cache(maxsize=16)
def download_social_media_video(url):
logger.info(f"Attempting social download: {url}")
temp_dir = tempfile.mkdtemp()
output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
final_audio_file_path = None
ydl_opts = {'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}], 'outtmpl': output_template, 'quiet': True, 'no_warnings': True, 'nocheckcertificate': True, 'retries': 3, 'socket_timeout': 15, 'cachedir': False}
try:
with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True)
found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
if not found_files: raise FileNotFoundError(f"Downloaded MP3 not found in {temp_dir}")
final_audio_file_path = os.path.join(temp_dir, found_files[0])
with open(final_audio_file_path, 'rb') as f: audio_content = f.read()
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
temp_output_file.write(audio_content); final_path_for_gradio = temp_output_file.name
logger.info(f"Social audio saved to: {final_path_for_gradio}")
return final_path_for_gradio
except yt_dlp.utils.DownloadError as e: logger.error(f"yt-dlp error {url}: {e}"); return None
except Exception as e: logger.error(f"Download error {url}: {e}"); logger.error(traceback.format_exc()); return None
finally:
if os.path.exists(temp_dir):
try: import shutil; shutil.rmtree(temp_dir)
except Exception as cleanup_e: logger.warning(f"Cleanup failed {temp_dir}: {cleanup_e}")
def convert_video_to_audio(video_file_path):
logger.info(f"Converting video: {video_file_path}")
output_file_path = None
try:
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: output_file_path = temp_file.name
command = ["ffmpeg", "-i", video_file_path, "-vn", "-acodec", "libmp3lame", "-ab", "192k", "-ar", "44100", "-ac", "2", output_file_path, "-y", "-loglevel", "error"]
subprocess.run(command, check=True, capture_output=True, text=True, timeout=120)
if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0: raise RuntimeError("ffmpeg output empty")
logger.info(f"Video converted to: {output_file_path}")
return output_file_path
except subprocess.CalledProcessError as e: logger.error(f"ffmpeg fail {video_file_path}: {e.stderr}"); raise RuntimeError(f"ffmpeg failed: {e.stderr}") from e
except subprocess.TimeoutExpired as e: logger.error(f"ffmpeg timeout {video_file_path}"); raise RuntimeError("ffmpeg timed out") from e
except Exception as e: logger.error(f"Video conversion error {video_file_path}: {e}"); logger.error(traceback.format_exc()); raise
finally:
if output_file_path and os.path.exists(output_file_path) and ( 'e' in locals() or (not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0)):
try: os.remove(output_file_path)
except: pass
def preprocess_audio(input_audio_path):
logger.info(f"Preprocessing audio: {input_audio_path}")
output_path = None
try:
if not os.path.exists(input_audio_path): raise FileNotFoundError(f"Preprocessing input not found: {input_audio_path}")
audio = AudioSegment.from_file(input_audio_path)
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
output_path = temp_file.name; audio.export(output_path, format="mp3")
logger.info(f"Audio preprocessed to: {output_path}")
return output_path
except FileNotFoundError as e: logger.error(f"Preprocessing file not found: {e}"); raise
except Exception as e: logger.error(f"Preprocessing error {input_audio_path}: {e}"); logger.error(traceback.format_exc()); raise
finally:
if 'e' in locals() and output_path and os.path.exists(output_path):
try: os.remove(output_path)
except: pass
@spaces.GPU(duration=300)
def transcribe_audio_or_video(file_input):
logger.info(f"--- Starting transcription: {type(file_input)} ---")
audio_file_to_transcribe = None; temp_files_to_clean = []; transcription = ""
try:
logger.info("Checking Whisper model..."); model_manager.check_whisper_initialized()
if file_input is None: return ""
if isinstance(file_input, str): input_path = file_input
elif hasattr(file_input, 'name') and file_input.name: input_path = file_input.name
else: raise TypeError("Invalid input type.")
if not os.path.exists(input_path): raise FileNotFoundError(f"Input not found: {input_path}")
file_extension = os.path.splitext(input_path)[1].lower()
if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
converted_audio_path = convert_video_to_audio(input_path)
temp_files_to_clean.append(converted_audio_path); audio_file_to_process = converted_audio_path
elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac']: audio_file_to_process = input_path
else: raise ValueError(f"Unsupported type: {file_extension}")
try:
preprocessed_audio_path = preprocess_audio(audio_file_to_process)
if preprocessed_audio_path != audio_file_to_process: temp_files_to_clean.append(preprocessed_audio_path)
audio_file_to_transcribe = preprocessed_audio_path
except Exception as preprocess_err: logger.warning(f"Preprocessing failed ({preprocess_err}), using original."); audio_file_to_transcribe = audio_file_to_process
if not os.path.exists(audio_file_to_transcribe): raise FileNotFoundError(f"File to transcribe lost: {audio_file_to_transcribe}")
logger.info(f"Transcribing: {audio_file_to_transcribe}")
with torch.inference_mode():
use_fp16 = torch.cuda.is_available()
result = model_manager.whisper_model.transcribe(audio_file_to_transcribe, fp16=use_fp16)
if not result or "text" not in result: raise RuntimeError("Transcription empty result")
transcription = result.get("text", "")
logger.info(f"Transcription success: '{transcription[:100]}...'")
except Exception as e: logger.error(f"!!! Transcription failed: {e}"); logger.error(traceback.format_exc()); transcription = f"Error during transcription: {e}"
finally:
logger.debug(f"--- Cleaning {len(temp_files_to_clean)} temp transcription files ---")
for temp_file in temp_files_to_clean:
try:
if os.path.exists(temp_file): os.remove(temp_file)
except Exception as e: logger.warning(f"Cleanup failed {temp_file}: {e}")
return transcription
@lru_cache(maxsize=16)
def read_document(document_path):
logger.info(f"Reading document: {document_path}")
try:
if not os.path.exists(document_path): raise FileNotFoundError(f"Doc not found: {document_path}")
ext = os.path.splitext(document_path)[1].lower(); logger.debug(f"Doc type: {ext}")
content = ""
if ext == ".pdf":
doc = fitz.open(document_path)
if doc.is_encrypted and not doc.authenticate(""): raise ValueError("Encrypted PDF")
content = "\n".join([page.get_text() for page in doc]); doc.close()
elif ext == ".docx": doc = docx.Document(document_path); content = "\n".join([p.text for p in doc.paragraphs])
elif ext in (".xlsx", ".xls"):
xls = pd.ExcelFile(document_path); parts = []
for sheet in xls.sheet_names: df = pd.read_excel(xls, sheet_name=sheet); parts.append(f"--- {sheet} ---\n{df.to_string()}")
content = "\n\n".join(parts).strip()
elif ext == ".csv":
try:
with open(document_path, 'rb') as f: import chardet; enc = chardet.detect(f.read())['encoding']
df = pd.read_csv(document_path, encoding=enc)
except Exception as e1:
logger.warning(f"CSV parse failed ({e1}), trying alternatives...")
try: df = pd.read_csv(document_path, sep=';', encoding=enc)
except Exception as e2: df = pd.read_csv(document_path, encoding='latin1') # Last resort
content = df.to_string()
else: return "Unsupported file type."
logger.info(f"Doc read success. Length: {len(content)}")
return content
except Exception as e: logger.error(f"!!! Read doc error: {e}"); logger.error(traceback.format_exc()); return f"Error reading document: {e}"
@lru_cache(maxsize=16)
def read_url(url):
logger.info(f"Reading URL: {url}")
if not url or not url.strip().startswith('http'): return ""
try:
headers = {'User-Agent': 'Mozilla/5.0 ...', 'Accept': 'text/html...', 'Accept-Language': 'en-US,en;q=0.9', 'Connection': 'keep-alive'}
response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
response.raise_for_status()
ct = response.headers.get('content-type', '').lower()
if not ('html' in ct or 'text' in ct): return f"Error: Non-text content type: {ct}"
enc = response.encoding if response.encoding else response.apparent_encoding
html = response.content.decode(enc or 'utf-8', errors='ignore')
soup = BeautifulSoup(html, 'html.parser')
for tag in soup(["script", "style", "meta", "noscript", "iframe", "header", "footer", "nav", "aside", "form", "button", "link", "head"]): tag.extract()
main = (soup.find("main") or soup.find("article") or soup.find("div", class_=["content", "main", "post-content", "entry-content", "article-body", "story-content"]) or soup.find("div", id=["content", "main", "article", "story"]))
text = main.get_text(separator='\n', strip=True) if main else soup.body.get_text(separator='\n', strip=True) if soup.body else soup.get_text(separator='\n', strip=True)
lines = [line.strip() for line in text.split('\n') if line.strip()]; cleaned = "\n".join(lines)
if not cleaned: return "Error: Could not extract text."
max_c = 15000; final = (cleaned[:max_c] + "... [truncated]") if len(cleaned) > max_c else cleaned
logger.info(f"URL read success. Length: {len(final)}")
return final
except Exception as e: logger.error(f"!!! Read URL error: {e}"); logger.error(traceback.format_exc()); return f"Error reading URL: {e}"
def process_social_media_url(url):
logger.info(f"--- Processing social URL: {url} ---")
if not url or not url.strip().startswith('http'): return None
text = None; video = None; audio_file = None
try: text_res = read_url(url); text = text_res if text_res and not text_res.startswith("Error:") else None
except Exception as e: logger.error(f"Social text read error: {e}")
try:
audio_file = download_social_media_video(url)
if audio_file: video_res = transcribe_audio_or_video(audio_file); video = video_res if video_res and not video_res.startswith("Error:") else None
except Exception as e: logger.error(f"Social audio proc error: {e}")
finally:
if audio_file and os.path.exists(audio_file):
try: os.remove(audio_file)
except Exception as e: logger.warning(f"Social cleanup fail {audio_file}: {e}")
logger.debug(f"--- Finished social URL: {url} ---")
if text or video: return {"text": text or "", "video": video or ""}
else: return None
# ==============================================================
# ========= SIMPLIFIED generate_news FOR DEBUGGING =============
# ==============================================================
@spaces.GPU(duration=10) # Duración corta solo para prueba
def generate_news(instructions, facts, size, tone, *args):
request_start_time = time.time()
logger.info("--- generate_news function started (SIMPLIFIED DEBUG VERSION) ---")
generated_article = "Debug: Simplified function executed."
raw_transcriptions = f"Debug info:\nInstructions: {bool(instructions)}\nFacts: {bool(facts)}\nSize: {size}\nTone: {tone}\nNum args: {len(args)}"
error_to_report = None
# --- Comenta TODO el procesamiento y carga de modelos ---
try:
logger.info("Simplified version: Skipping all processing and model loading.")
# --- NO LLAMES A check_llm_initialized NI check_whisper_initialized ---
# --- NO PROCESES documents, urls, audio, social ---
# --- NO CONSTRUYAS EL PROMPT ---
# --- NO LLAMES A text_pipeline ---
pass # Simplemente no hacemos nada
logger.info("Simplified version: Reached end of try block.")
except Exception as e:
total_time = time.time() - request_start_time
logger.error(f"!!! UNHANDLED Error even in SIMPLIFIED generate_news after {total_time:.2f} seconds: {str(e)}")
logger.error(traceback.format_exc())
error_to_report = f"Error in simplified function: {str(e)}"
generated_article = error_to_report
raw_transcriptions += f"\n\n[CRITICAL ERROR] Simplified execution failed: {str(e)}"
total_time = time.time() - request_start_time
logger.info(f"--- generate_news (SIMPLIFIED DEBUG VERSION) finished in {total_time:.2f} seconds. ---")
# Asegúrate de devolver dos strings
return generated_article, raw_transcriptions
# ==============================================================
# ================= END OF SIMPLIFIED VERSION ==================
# ==============================================================
# --- create_demo function ---
# --- MODIFIED: Removed file_types from gr.File ---
def create_demo():
"""Creates the Gradio interface"""
logger.info("--- Creating Gradio interface ---")
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# 📰 NewsIA - AI News Generator")
gr.Markdown("Create professional news articles from multiple information sources.")
all_inputs = []
with gr.Row():
with gr.Column(scale=2):
instructions = gr.Textbox(label="Instructions for the News Article", placeholder="Enter specific instructions...", lines=2)
all_inputs.append(instructions)
facts = gr.Textbox(label="Main Facts", placeholder="Describe the most important facts...", lines=4)
all_inputs.append(facts)
with gr.Row():
size_slider = gr.Slider(label="Approximate Length (words)", minimum=100, maximum=700, value=250, step=50)
all_inputs.append(size_slider)
tone_dropdown = gr.Dropdown(label="Tone of the News Article", choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"], value="neutral")
all_inputs.append(tone_dropdown)
with gr.Column(scale=3):
with gr.Tabs():
with gr.TabItem("📝 Documents"):
gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
doc_inputs = []
for i in range(1, 6):
# *** CHANGED: Removed file_types ***
doc_file = gr.File(label=f"Document {i}", file_count="single")
doc_inputs.append(doc_file)
all_inputs.extend(doc_inputs)
with gr.TabItem("🔊 Audio/Video"):
gr.Markdown("Upload audio or video files... Max 5 sources.")
audio_video_inputs = []
for i in range(1, 6):
with gr.Group():
gr.Markdown(f"**Source {i}**")
# *** CHANGED: Removed file_types ***
audio_file = gr.File(label=f"Audio/Video File {i}")
with gr.Row():
speaker_name = gr.Textbox(label="Speaker Name", placeholder="Name...")
speaker_role = gr.Textbox(label="Role/Position", placeholder="Role...")
audio_video_inputs.extend([audio_file, speaker_name, speaker_role])
all_inputs.extend(audio_video_inputs)
with gr.TabItem("🌐 URLs"):
gr.Markdown("Add URLs to relevant web pages... Max 5.")
url_inputs = []
for i in range(1, 6):
url_textbox = gr.Textbox(label=f"URL {i}", placeholder="https://...")
url_inputs.append(url_textbox)
all_inputs.extend(url_inputs)
with gr.TabItem("📱 Social Media"):
gr.Markdown("Add URLs to social media posts... Max 3.")
social_inputs = []
for i in range(1, 4):
with gr.Group():
gr.Markdown(f"**Social Media Source {i}**")
social_url_textbox = gr.Textbox(label=f"Post URL", placeholder="https://...")
with gr.Row():
social_name_textbox = gr.Textbox(label=f"Account Name/User", placeholder="@username")
social_context_textbox = gr.Textbox(label=f"Context", placeholder="Context...")
social_inputs.extend([social_url_textbox, social_name_textbox, social_context_textbox])
all_inputs.extend(social_inputs)
generate_button = gr.Button("✨ Generate News Article", variant="primary")
clear_button = gr.Button("🔄 Clear All Inputs")
with gr.Tabs():
with gr.TabItem("📄 Generated News Article"):
news_output = gr.Textbox(label="Draft News Article", lines=20, show_copy_button=True, interactive=False)
with gr.TabItem("🎙️ Source Transcriptions & Logs"):
transcriptions_output = gr.Textbox(label="Transcriptions and Processing Log", lines=15, show_copy_button=True, interactive=False)
outputs_list = [news_output, transcriptions_output]
generate_button.click(fn=generate_news, inputs=all_inputs, outputs=outputs_list)
def clear_all_inputs_and_outputs():
logger.info("--- Clear All button clicked ---")
reset_values = []
for input_comp in all_inputs:
if isinstance(input_comp, (gr.Textbox, gr.Dropdown)): reset_values.append("")
elif isinstance(input_comp, gr.Slider): reset_values.append(250)
elif isinstance(input_comp, gr.File): reset_values.append(None)
else: reset_values.append(None)
reset_values.extend(["", ""])
try: logger.info("Calling model reset from clear button handler."); model_manager.reset_models(force=True)
except Exception as e: logger.error(f"Error resetting models during clear: {e}")
logger.info("--- Clear All operation finished ---")
return reset_values
clear_button.click(fn=clear_all_inputs_and_outputs, inputs=None, outputs=all_inputs + outputs_list)
logger.info("--- Gradio interface creation complete ---")
return demo
# --- main execution block remains the same ---
if __name__ == "__main__":
logger.info("--- Running main execution block ---")
news_demo = create_demo()
news_demo.queue()
logger.info("Launching Gradio interface...")
try:
news_demo.launch(server_name="0.0.0.0", server_port=7860)
logger.info("Gradio launch called. Application running.")
except Exception as launch_err:
logger.error(f"!!! CRITICAL Error during Gradio launch: {launch_err}")
logger.error(traceback.format_exc())
logger.info("--- Main execution block potentially finished ---") |