File size: 28,377 Bytes
1b167bf
 
 
 
 
 
 
 
 
 
4e5d878
1b167bf
432f68e
951c395
1b167bf
951c395
ab6abb0
3e010de
 
432f68e
 
1b167bf
 
 
43f972f
 
1b167bf
 
 
43f972f
bd1b6cf
3e010de
 
 
bd1b6cf
432f68e
 
 
 
 
bd1b6cf
 
43f972f
bd1b6cf
3e010de
951c395
 
432f68e
951c395
 
bd1b6cf
951c395
 
 
432f68e
951c395
43f972f
bd1b6cf
951c395
 
e71af4a
951c395
e71af4a
 
3e010de
432f68e
 
43f972f
432f68e
e71af4a
 
 
 
 
 
 
 
 
 
 
 
43f972f
 
 
 
 
e71af4a
 
43f972f
e71af4a
 
 
 
43f972f
e71af4a
43f972f
e71af4a
 
43f972f
e71af4a
 
3e010de
bd1b6cf
43f972f
 
432f68e
bd1b6cf
951c395
7a1615b
bd1b6cf
e71af4a
43f972f
 
 
bd1b6cf
43f972f
 
1b167bf
e71af4a
3e010de
bd1b6cf
43f972f
 
432f68e
bd1b6cf
3e010de
e71af4a
43f972f
bd1b6cf
43f972f
 
951c395
3e010de
bd1b6cf
e71af4a
bd1b6cf
43f972f
432f68e
43f972f
e71af4a
43f972f
 
 
3e010de
432f68e
3e010de
bd1b6cf
e71af4a
bd1b6cf
43f972f
432f68e
43f972f
e71af4a
43f972f
 
 
3e010de
432f68e
3e010de
43f972f
e71af4a
48d2a37
 
 
 
 
43f972f
48d2a37
1b167bf
43f972f
432f68e
 
48d2a37
43f972f
1b167bf
43f972f
 
 
 
48d2a37
432f68e
43f972f
 
bd1b6cf
43f972f
 
bd1b6cf
 
43f972f
 
1b167bf
432f68e
43f972f
48d2a37
1b167bf
48d2a37
 
43f972f
 
 
432f68e
43f972f
 
 
 
 
48d2a37
 
1b167bf
432f68e
43f972f
bd1b6cf
1b167bf
43f972f
432f68e
1b167bf
43f972f
 
432f68e
43f972f
 
 
 
 
 
1b167bf
48d2a37
432f68e
43f972f
 
1b167bf
43f972f
48d2a37
43f972f
 
 
 
432f68e
 
48d2a37
 
43f972f
 
3e010de
432f68e
48d2a37
432f68e
43f972f
 
 
e71af4a
43f972f
48d2a37
43f972f
 
 
 
432f68e
43f972f
432f68e
 
43f972f
 
e71af4a
bd1b6cf
432f68e
1b167bf
43f972f
1b167bf
43f972f
 
bd1b6cf
43f972f
1b167bf
43f972f
48d2a37
43f972f
 
 
 
 
 
432f68e
43f972f
 
 
 
 
 
bd1b6cf
43f972f
 
bd1b6cf
43f972f
1b167bf
432f68e
1b167bf
43f972f
48d2a37
1b167bf
43f972f
432f68e
e71af4a
43f972f
 
 
 
 
 
 
 
 
 
 
 
 
 
1b167bf
432f68e
43f972f
48d2a37
43f972f
 
 
432f68e
43f972f
 
 
432f68e
43f972f
 
 
 
 
 
48d2a37
 
 
 
1b167bf
76536cf
1b167bf
432f68e
76536cf
 
 
 
bd1b6cf
76536cf
1b167bf
76536cf
 
 
 
 
 
48d2a37
76536cf
 
 
 
 
 
 
 
 
 
 
 
 
432f68e
48d2a37
 
 
bd1b6cf
ab6abb0
43f972f
 
1b167bf
432f68e
bd1b6cf
3e010de
f1d02c3
432f68e
 
1b167bf
 
e71af4a
432f68e
e71af4a
432f68e
3e010de
e71af4a
432f68e
e71af4a
432f68e
1b167bf
 
f1d02c3
432f68e
 
f1d02c3
43f972f
 
432f68e
 
3e010de
e71af4a
432f68e
 
3e010de
f1d02c3
43f972f
 
3e010de
e71af4a
 
 
432f68e
3e010de
e71af4a
432f68e
 
e71af4a
432f68e
 
f1d02c3
e71af4a
432f68e
 
3e010de
432f68e
e71af4a
3e010de
e71af4a
 
 
432f68e
 
43f972f
 
3e010de
432f68e
e71af4a
432f68e
e71af4a
 
432f68e
e71af4a
432f68e
 
bd1b6cf
432f68e
 
e71af4a
 
 
 
bd1b6cf
43f972f
 
bd1b6cf
432f68e
 
e71af4a
43f972f
1b167bf
 
e71af4a
 
1b167bf
bd1b6cf
432f68e
e71af4a
432f68e
bd1b6cf
e71af4a
bd1b6cf
 
 
 
43f972f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
import spaces
import gradio as gr
import logging
import os
import tempfile
import pandas as pd
import requests
from bs4 import BeautifulSoup
import torch
import whisper
import subprocess
from pydub import AudioSegment
import fitz  # PyMuPDF
import docx
import yt_dlp
from functools import lru_cache
import gc
import time
from huggingface_hub import login
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
import traceback # For detailed error logging

# Configure logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(filename)s:%(lineno)d - %(message)s'
)
logger = logging.getLogger(__name__)

logger.info("--- Starting App ---")

# Login to Hugging Face Hub if token is available
HUGGINGFACE_TOKEN = os.environ.get('HUGGINGFACE_TOKEN')
if HUGGINGFACE_TOKEN:
    logger.info("HUGGINGFACE_TOKEN environment variable found.")
    try:
        login(token=HUGGINGFACE_TOKEN)
        logger.info("Successfully logged in to Hugging Face Hub.")
    except Exception as e:
        logger.error(f"Failed to login to Hugging Face Hub: {e}")
        logger.error(traceback.format_exc())
else:
    logger.warning("HUGGINGFACE_TOKEN environment variable not set.")


class ModelManager:
    _instance = None

    def __new__(cls):
        if cls._instance is None:
            logger.info("Creating new ModelManager instance.")
            cls._instance = super(ModelManager, cls).__new__(cls)
            cls._instance._initialized = False
        return cls._instance

    def __init__(self):
        if not hasattr(self, '_initialized') or not self._initialized:
            logger.info("Initializing ModelManager attributes.")
            self.tokenizer = None
            self.model = None
            self.text_pipeline = None
            self.whisper_model = None
            self.llm_loaded = False
            self.whisper_loaded = False
            self.last_used = time.time()
            self.llm_loading = False
            self.whisper_loading = False
            self._initialized = True

    def _cleanup_memory(self):
        logger.info("Running garbage collection...")
        collected_count = gc.collect()
        logger.info(f"Garbage collected ({collected_count} objects).")
        if torch.cuda.is_available():
            logger.info("Clearing CUDA cache...")
            torch.cuda.empty_cache()
            logger.info("CUDA cache cleared.")

    def reset_llm(self):
        logger.info("--- Attempting to reset LLM ---")
        try:
            if hasattr(self, 'model') and self.model is not None: del self.model; logger.info("LLM model deleted.")
            if hasattr(self, 'tokenizer') and self.tokenizer is not None: del self.tokenizer; logger.info("LLM tokenizer deleted.")
            if hasattr(self, 'text_pipeline') and self.text_pipeline is not None: del self.text_pipeline; logger.info("LLM pipeline deleted.")
            self.model = None; self.tokenizer = None; self.text_pipeline = None
            self.llm_loaded = False
            self._cleanup_memory()
            logger.info("LLM components reset successfully.")
        except Exception as e: logger.error(f"!!! ERROR during LLM reset: {e}"); logger.error(traceback.format_exc())

    def reset_whisper(self):
        logger.info("--- Attempting to reset Whisper ---")
        try:
            if hasattr(self, 'whisper_model') and self.whisper_model is not None: del self.whisper_model; logger.info("Whisper model deleted.")
            self.whisper_model = None
            self.whisper_loaded = False
            self._cleanup_memory()
            logger.info("Whisper component reset successfully.")
        except Exception as e: logger.error(f"!!! ERROR during Whisper reset: {e}"); logger.error(traceback.format_exc())

    @spaces.GPU(duration=120)
    def initialize_llm(self):
        logger.info("Attempting to initialize LLM.")
        if self.llm_loading: logger.info("LLM initialization already in progress."); return True
        if self.llm_loaded: logger.info("LLM already initialized."); self.last_used = time.time(); return True
        self.llm_loading = True
        logger.info("Starting LLM initialization...")
        try:
            MODEL_NAME = "TinyLlama/TinyLlama-1.1B-Chat-v1.0"
            logger.info(f"Using LLM model: {MODEL_NAME}")
            self.tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, use_fast=True)
            if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token
            self.model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, token=HUGGINGFACE_TOKEN, device_map="auto", torch_dtype=torch.float16, low_cpu_mem_usage=True, offload_folder="offload", offload_state_dict=True)
            self.text_pipeline = pipeline("text-generation", model=self.model, tokenizer=self.tokenizer, torch_dtype=torch.float16, device_map="auto", max_length=1024)
            logger.info("LLM initialized successfully.")
            self.last_used = time.time(); self.llm_loaded = True; self.llm_loading = False; return True
        except Exception as e: logger.error(f"!!! ERROR during LLM initialization: {e}"); logger.error(traceback.format_exc()); self.reset_llm(); self.llm_loading = False; raise

    @spaces.GPU(duration=120)
    def initialize_whisper(self):
        logger.info("Attempting to initialize Whisper.")
        if self.whisper_loading: logger.info("Whisper initialization already in progress."); return True
        if self.whisper_loaded: logger.info("Whisper already initialized."); self.last_used = time.time(); return True
        self.whisper_loading = True
        logger.info("Starting Whisper initialization...")
        try:
            WHISPER_MODEL_NAME = "tiny"
            self.whisper_model = whisper.load_model(WHISPER_MODEL_NAME, device="cuda" if torch.cuda.is_available() else "cpu", download_root="/tmp/whisper")
            logger.info(f"Whisper model '{WHISPER_MODEL_NAME}' loaded successfully.")
            self.last_used = time.time(); self.whisper_loaded = True; self.whisper_loading = False; return True
        except Exception as e: logger.error(f"!!! ERROR during Whisper initialization: {e}"); logger.error(traceback.format_exc()); self.reset_whisper(); self.whisper_loading = False; raise

    def check_llm_initialized(self):
        logger.info("Checking if LLM is initialized.")
        if not self.llm_loaded:
            logger.info("LLM not initialized, attempting initialization...")
            if not self.llm_loading: self.initialize_llm(); logger.info("LLM initialization completed by check_llm_initialized.")
            else:
                 logger.info("LLM initialization already in progress. Waiting briefly.")
                 time.sleep(10)
                 if not self.llm_loaded: raise RuntimeError("LLM initialization timed out or failed after waiting.")
                 else: logger.info("LLM seems initialized now after waiting.")
        else: logger.info("LLM was already initialized.")
        self.last_used = time.time()

    def check_whisper_initialized(self):
        logger.info("Checking if Whisper is initialized.")
        if not self.whisper_loaded:
            logger.info("Whisper model not initialized, attempting initialization...")
            if not self.whisper_loading: self.initialize_whisper(); logger.info("Whisper initialization completed by check_whisper_initialized.")
            else:
                logger.info("Whisper initialization already in progress. Waiting briefly.")
                time.sleep(10)
                if not self.whisper_loaded: raise RuntimeError("Whisper initialization timed out or failed after waiting.")
                else: logger.info("Whisper seems initialized now after waiting.")
        else: logger.info("Whisper was already initialized.")
        self.last_used = time.time()

    def reset_models(self, force=False):
        if force: logger.info("Forcing reset of all models."); self.reset_llm(); self.reset_whisper()

# Create global model manager instance
logger.info("Creating global ModelManager instance.")
model_manager = ModelManager()

# --- Functions: download_social_media_video, convert_video_to_audio, etc. ---
# --- Kept exactly the same as the previous full version           ---
@lru_cache(maxsize=16)
def download_social_media_video(url):
    logger.info(f"Attempting social download: {url}")
    temp_dir = tempfile.mkdtemp()
    output_template = os.path.join(temp_dir, '%(id)s.%(ext)s')
    final_audio_file_path = None
    ydl_opts = {'format': 'bestaudio/best', 'postprocessors': [{'key': 'FFmpegExtractAudio', 'preferredcodec': 'mp3', 'preferredquality': '192'}], 'outtmpl': output_template, 'quiet': True, 'no_warnings': True, 'nocheckcertificate': True, 'retries': 3, 'socket_timeout': 15, 'cachedir': False}
    try:
        with yt_dlp.YoutubeDL(ydl_opts) as ydl: info_dict = ydl.extract_info(url, download=True)
        found_files = [f for f in os.listdir(temp_dir) if f.endswith('.mp3')]
        if not found_files: raise FileNotFoundError(f"Downloaded MP3 not found in {temp_dir}")
        final_audio_file_path = os.path.join(temp_dir, found_files[0])
        with open(final_audio_file_path, 'rb') as f: audio_content = f.read()
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_output_file:
            temp_output_file.write(audio_content); final_path_for_gradio = temp_output_file.name
        logger.info(f"Social audio saved to: {final_path_for_gradio}")
        return final_path_for_gradio
    except yt_dlp.utils.DownloadError as e: logger.error(f"yt-dlp error {url}: {e}"); return None
    except Exception as e: logger.error(f"Download error {url}: {e}"); logger.error(traceback.format_exc()); return None
    finally:
        if os.path.exists(temp_dir):
            try: import shutil; shutil.rmtree(temp_dir)
            except Exception as cleanup_e: logger.warning(f"Cleanup failed {temp_dir}: {cleanup_e}")

def convert_video_to_audio(video_file_path):
    logger.info(f"Converting video: {video_file_path}")
    output_file_path = None
    try:
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: output_file_path = temp_file.name
        command = ["ffmpeg", "-i", video_file_path, "-vn", "-acodec", "libmp3lame", "-ab", "192k", "-ar", "44100", "-ac", "2", output_file_path, "-y", "-loglevel", "error"]
        subprocess.run(command, check=True, capture_output=True, text=True, timeout=120)
        if not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0: raise RuntimeError("ffmpeg output empty")
        logger.info(f"Video converted to: {output_file_path}")
        return output_file_path
    except subprocess.CalledProcessError as e: logger.error(f"ffmpeg fail {video_file_path}: {e.stderr}"); raise RuntimeError(f"ffmpeg failed: {e.stderr}") from e
    except subprocess.TimeoutExpired as e: logger.error(f"ffmpeg timeout {video_file_path}"); raise RuntimeError("ffmpeg timed out") from e
    except Exception as e: logger.error(f"Video conversion error {video_file_path}: {e}"); logger.error(traceback.format_exc()); raise
    finally:
        if output_file_path and os.path.exists(output_file_path) and ( 'e' in locals() or (not os.path.exists(output_file_path) or os.path.getsize(output_file_path) == 0)):
             try: os.remove(output_file_path)
             except: pass

def preprocess_audio(input_audio_path):
    logger.info(f"Preprocessing audio: {input_audio_path}")
    output_path = None
    try:
        if not os.path.exists(input_audio_path): raise FileNotFoundError(f"Preprocessing input not found: {input_audio_path}")
        audio = AudioSegment.from_file(input_audio_path)
        with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file:
            output_path = temp_file.name; audio.export(output_path, format="mp3")
        logger.info(f"Audio preprocessed to: {output_path}")
        return output_path
    except FileNotFoundError as e: logger.error(f"Preprocessing file not found: {e}"); raise
    except Exception as e: logger.error(f"Preprocessing error {input_audio_path}: {e}"); logger.error(traceback.format_exc()); raise
    finally:
        if 'e' in locals() and output_path and os.path.exists(output_path):
            try: os.remove(output_path)
            except: pass

@spaces.GPU(duration=300)
def transcribe_audio_or_video(file_input):
    logger.info(f"--- Starting transcription: {type(file_input)} ---")
    audio_file_to_transcribe = None; temp_files_to_clean = []; transcription = ""
    try:
        logger.info("Checking Whisper model..."); model_manager.check_whisper_initialized()
        if file_input is None: return ""
        if isinstance(file_input, str): input_path = file_input
        elif hasattr(file_input, 'name') and file_input.name: input_path = file_input.name
        else: raise TypeError("Invalid input type.")
        if not os.path.exists(input_path): raise FileNotFoundError(f"Input not found: {input_path}")
        file_extension = os.path.splitext(input_path)[1].lower()
        if file_extension in ['.mp4', '.avi', '.mov', '.mkv', '.webm']:
            converted_audio_path = convert_video_to_audio(input_path)
            temp_files_to_clean.append(converted_audio_path); audio_file_to_process = converted_audio_path
        elif file_extension in ['.mp3', '.wav', '.ogg', '.flac', '.m4a', '.aac']: audio_file_to_process = input_path
        else: raise ValueError(f"Unsupported type: {file_extension}")
        try:
            preprocessed_audio_path = preprocess_audio(audio_file_to_process)
            if preprocessed_audio_path != audio_file_to_process: temp_files_to_clean.append(preprocessed_audio_path)
            audio_file_to_transcribe = preprocessed_audio_path
        except Exception as preprocess_err: logger.warning(f"Preprocessing failed ({preprocess_err}), using original."); audio_file_to_transcribe = audio_file_to_process
        if not os.path.exists(audio_file_to_transcribe): raise FileNotFoundError(f"File to transcribe lost: {audio_file_to_transcribe}")
        logger.info(f"Transcribing: {audio_file_to_transcribe}")
        with torch.inference_mode():
            use_fp16 = torch.cuda.is_available()
            result = model_manager.whisper_model.transcribe(audio_file_to_transcribe, fp16=use_fp16)
        if not result or "text" not in result: raise RuntimeError("Transcription empty result")
        transcription = result.get("text", "")
        logger.info(f"Transcription success: '{transcription[:100]}...'")
    except Exception as e: logger.error(f"!!! Transcription failed: {e}"); logger.error(traceback.format_exc()); transcription = f"Error during transcription: {e}"
    finally:
        logger.debug(f"--- Cleaning {len(temp_files_to_clean)} temp transcription files ---")
        for temp_file in temp_files_to_clean:
            try:
                if os.path.exists(temp_file): os.remove(temp_file)
            except Exception as e: logger.warning(f"Cleanup failed {temp_file}: {e}")
        return transcription

@lru_cache(maxsize=16)
def read_document(document_path):
    logger.info(f"Reading document: {document_path}")
    try:
        if not os.path.exists(document_path): raise FileNotFoundError(f"Doc not found: {document_path}")
        ext = os.path.splitext(document_path)[1].lower(); logger.debug(f"Doc type: {ext}")
        content = ""
        if ext == ".pdf":
            doc = fitz.open(document_path)
            if doc.is_encrypted and not doc.authenticate(""): raise ValueError("Encrypted PDF")
            content = "\n".join([page.get_text() for page in doc]); doc.close()
        elif ext == ".docx": doc = docx.Document(document_path); content = "\n".join([p.text for p in doc.paragraphs])
        elif ext in (".xlsx", ".xls"):
            xls = pd.ExcelFile(document_path); parts = []
            for sheet in xls.sheet_names: df = pd.read_excel(xls, sheet_name=sheet); parts.append(f"--- {sheet} ---\n{df.to_string()}")
            content = "\n\n".join(parts).strip()
        elif ext == ".csv":
            try:
                with open(document_path, 'rb') as f: import chardet; enc = chardet.detect(f.read())['encoding']
                df = pd.read_csv(document_path, encoding=enc)
            except Exception as e1:
                 logger.warning(f"CSV parse failed ({e1}), trying alternatives...")
                 try: df = pd.read_csv(document_path, sep=';', encoding=enc)
                 except Exception as e2: df = pd.read_csv(document_path, encoding='latin1') # Last resort
            content = df.to_string()
        else: return "Unsupported file type."
        logger.info(f"Doc read success. Length: {len(content)}")
        return content
    except Exception as e: logger.error(f"!!! Read doc error: {e}"); logger.error(traceback.format_exc()); return f"Error reading document: {e}"

@lru_cache(maxsize=16)
def read_url(url):
    logger.info(f"Reading URL: {url}")
    if not url or not url.strip().startswith('http'): return ""
    try:
        headers = {'User-Agent': 'Mozilla/5.0 ...', 'Accept': 'text/html...', 'Accept-Language': 'en-US,en;q=0.9', 'Connection': 'keep-alive'}
        response = requests.get(url, headers=headers, timeout=20, allow_redirects=True)
        response.raise_for_status()
        ct = response.headers.get('content-type', '').lower()
        if not ('html' in ct or 'text' in ct): return f"Error: Non-text content type: {ct}"
        enc = response.encoding if response.encoding else response.apparent_encoding
        html = response.content.decode(enc or 'utf-8', errors='ignore')
        soup = BeautifulSoup(html, 'html.parser')
        for tag in soup(["script", "style", "meta", "noscript", "iframe", "header", "footer", "nav", "aside", "form", "button", "link", "head"]): tag.extract()
        main = (soup.find("main") or soup.find("article") or soup.find("div", class_=["content", "main", "post-content", "entry-content", "article-body", "story-content"]) or soup.find("div", id=["content", "main", "article", "story"]))
        text = main.get_text(separator='\n', strip=True) if main else soup.body.get_text(separator='\n', strip=True) if soup.body else soup.get_text(separator='\n', strip=True)
        lines = [line.strip() for line in text.split('\n') if line.strip()]; cleaned = "\n".join(lines)
        if not cleaned: return "Error: Could not extract text."
        max_c = 15000; final = (cleaned[:max_c] + "... [truncated]") if len(cleaned) > max_c else cleaned
        logger.info(f"URL read success. Length: {len(final)}")
        return final
    except Exception as e: logger.error(f"!!! Read URL error: {e}"); logger.error(traceback.format_exc()); return f"Error reading URL: {e}"

def process_social_media_url(url):
    logger.info(f"--- Processing social URL: {url} ---")
    if not url or not url.strip().startswith('http'): return None
    text = None; video = None; audio_file = None
    try: text_res = read_url(url); text = text_res if text_res and not text_res.startswith("Error:") else None
    except Exception as e: logger.error(f"Social text read error: {e}")
    try:
        audio_file = download_social_media_video(url)
        if audio_file: video_res = transcribe_audio_or_video(audio_file); video = video_res if video_res and not video_res.startswith("Error:") else None
    except Exception as e: logger.error(f"Social audio proc error: {e}")
    finally:
         if audio_file and os.path.exists(audio_file):
            try: os.remove(audio_file)
            except Exception as e: logger.warning(f"Social cleanup fail {audio_file}: {e}")
    logger.debug(f"--- Finished social URL: {url} ---")
    if text or video: return {"text": text or "", "video": video or ""}
    else: return None

# ==============================================================
# ========= SIMPLIFIED generate_news FOR DEBUGGING =============
# ==============================================================

@spaces.GPU(duration=10) # Duración corta solo para prueba
def generate_news(instructions, facts, size, tone, *args):
    request_start_time = time.time()
    logger.info("--- generate_news function started (SIMPLIFIED DEBUG VERSION) ---")
    generated_article = "Debug: Simplified function executed."
    raw_transcriptions = f"Debug info:\nInstructions: {bool(instructions)}\nFacts: {bool(facts)}\nSize: {size}\nTone: {tone}\nNum args: {len(args)}"
    error_to_report = None

    # --- Comenta TODO el procesamiento y carga de modelos ---
    try:
        logger.info("Simplified version: Skipping all processing and model loading.")
        # --- NO LLAMES A check_llm_initialized NI check_whisper_initialized ---
        # --- NO PROCESES documents, urls, audio, social ---
        # --- NO CONSTRUYAS EL PROMPT ---
        # --- NO LLAMES A text_pipeline ---
        pass # Simplemente no hacemos nada
        logger.info("Simplified version: Reached end of try block.")

    except Exception as e:
        total_time = time.time() - request_start_time
        logger.error(f"!!! UNHANDLED Error even in SIMPLIFIED generate_news after {total_time:.2f} seconds: {str(e)}")
        logger.error(traceback.format_exc())
        error_to_report = f"Error in simplified function: {str(e)}"
        generated_article = error_to_report
        raw_transcriptions += f"\n\n[CRITICAL ERROR] Simplified execution failed: {str(e)}"

    total_time = time.time() - request_start_time
    logger.info(f"--- generate_news (SIMPLIFIED DEBUG VERSION) finished in {total_time:.2f} seconds. ---")
    # Asegúrate de devolver dos strings
    return generated_article, raw_transcriptions

# ==============================================================
# ================= END OF SIMPLIFIED VERSION ==================
# ==============================================================


# --- create_demo function ---
# --- MODIFIED: Removed file_types from gr.File ---
def create_demo():
    """Creates the Gradio interface"""
    logger.info("--- Creating Gradio interface ---")
    with gr.Blocks(theme=gr.themes.Soft()) as demo:
        gr.Markdown("# 📰 NewsIA - AI News Generator")
        gr.Markdown("Create professional news articles from multiple information sources.")
        all_inputs = []
        with gr.Row():
            with gr.Column(scale=2):
                instructions = gr.Textbox(label="Instructions for the News Article", placeholder="Enter specific instructions...", lines=2)
                all_inputs.append(instructions)
                facts = gr.Textbox(label="Main Facts", placeholder="Describe the most important facts...", lines=4)
                all_inputs.append(facts)
                with gr.Row():
                    size_slider = gr.Slider(label="Approximate Length (words)", minimum=100, maximum=700, value=250, step=50)
                    all_inputs.append(size_slider)
                    tone_dropdown = gr.Dropdown(label="Tone of the News Article", choices=["neutral", "serious", "formal", "urgent", "investigative", "human-interest", "lighthearted"], value="neutral")
                    all_inputs.append(tone_dropdown)
            with gr.Column(scale=3):
                with gr.Tabs():
                    with gr.TabItem("📝 Documents"):
                        gr.Markdown("Upload relevant documents (PDF, DOCX, XLSX, CSV). Max 5.")
                        doc_inputs = []
                        for i in range(1, 6):
                            # *** CHANGED: Removed file_types ***
                            doc_file = gr.File(label=f"Document {i}", file_count="single")
                            doc_inputs.append(doc_file)
                        all_inputs.extend(doc_inputs)
                    with gr.TabItem("🔊 Audio/Video"):
                         gr.Markdown("Upload audio or video files... Max 5 sources.")
                         audio_video_inputs = []
                         for i in range(1, 6):
                            with gr.Group():
                                gr.Markdown(f"**Source {i}**")
                                # *** CHANGED: Removed file_types ***
                                audio_file = gr.File(label=f"Audio/Video File {i}")
                                with gr.Row():
                                    speaker_name = gr.Textbox(label="Speaker Name", placeholder="Name...")
                                    speaker_role = gr.Textbox(label="Role/Position", placeholder="Role...")
                                audio_video_inputs.extend([audio_file, speaker_name, speaker_role])
                         all_inputs.extend(audio_video_inputs)
                    with gr.TabItem("🌐 URLs"):
                         gr.Markdown("Add URLs to relevant web pages... Max 5.")
                         url_inputs = []
                         for i in range(1, 6):
                            url_textbox = gr.Textbox(label=f"URL {i}", placeholder="https://...")
                            url_inputs.append(url_textbox)
                         all_inputs.extend(url_inputs)
                    with gr.TabItem("📱 Social Media"):
                         gr.Markdown("Add URLs to social media posts... Max 3.")
                         social_inputs = []
                         for i in range(1, 4):
                            with gr.Group():
                                gr.Markdown(f"**Social Media Source {i}**")
                                social_url_textbox = gr.Textbox(label=f"Post URL", placeholder="https://...")
                                with gr.Row():
                                    social_name_textbox = gr.Textbox(label=f"Account Name/User", placeholder="@username")
                                    social_context_textbox = gr.Textbox(label=f"Context", placeholder="Context...")
                                social_inputs.extend([social_url_textbox, social_name_textbox, social_context_textbox])
                         all_inputs.extend(social_inputs)

        generate_button = gr.Button("✨ Generate News Article", variant="primary")
        clear_button = gr.Button("🔄 Clear All Inputs")
        with gr.Tabs():
            with gr.TabItem("📄 Generated News Article"):
                news_output = gr.Textbox(label="Draft News Article", lines=20, show_copy_button=True, interactive=False)
            with gr.TabItem("🎙️ Source Transcriptions & Logs"):
                transcriptions_output = gr.Textbox(label="Transcriptions and Processing Log", lines=15, show_copy_button=True, interactive=False)

        outputs_list = [news_output, transcriptions_output]
        generate_button.click(fn=generate_news, inputs=all_inputs, outputs=outputs_list)

        def clear_all_inputs_and_outputs():
            logger.info("--- Clear All button clicked ---")
            reset_values = []
            for input_comp in all_inputs:
                if isinstance(input_comp, (gr.Textbox, gr.Dropdown)): reset_values.append("")
                elif isinstance(input_comp, gr.Slider): reset_values.append(250)
                elif isinstance(input_comp, gr.File): reset_values.append(None)
                else: reset_values.append(None)
            reset_values.extend(["", ""])
            try: logger.info("Calling model reset from clear button handler."); model_manager.reset_models(force=True)
            except Exception as e: logger.error(f"Error resetting models during clear: {e}")
            logger.info("--- Clear All operation finished ---")
            return reset_values

        clear_button.click(fn=clear_all_inputs_and_outputs, inputs=None, outputs=all_inputs + outputs_list)
    logger.info("--- Gradio interface creation complete ---")
    return demo


# --- main execution block remains the same ---
if __name__ == "__main__":
    logger.info("--- Running main execution block ---")
    news_demo = create_demo()
    news_demo.queue()
    logger.info("Launching Gradio interface...")
    try:
        news_demo.launch(server_name="0.0.0.0", server_port=7860)
        logger.info("Gradio launch called. Application running.")
    except Exception as launch_err:
         logger.error(f"!!! CRITICAL Error during Gradio launch: {launch_err}")
         logger.error(traceback.format_exc())
    logger.info("--- Main execution block potentially finished ---")