Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
3 |
+
import torch
|
4 |
+
import fitz # PyMuPDF
|
5 |
+
from docx import Document
|
6 |
+
|
7 |
+
# Load model and tokenizer
|
8 |
+
model_name = "microsoft/phi-2"
|
9 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
10 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16)
|
11 |
+
|
12 |
+
def extract_text_from_pdf(file):
|
13 |
+
doc = fitz.open(stream=file.read(), filetype="pdf")
|
14 |
+
text = ""
|
15 |
+
for page in doc:
|
16 |
+
text += page.get_text()
|
17 |
+
return text
|
18 |
+
|
19 |
+
def extract_text_from_docx(file):
|
20 |
+
doc = Document(file)
|
21 |
+
return "\n".join([paragraph.text for paragraph in doc.paragraphs])
|
22 |
+
|
23 |
+
def convert_to_story(file):
|
24 |
+
if file is None:
|
25 |
+
return "Please upload a file."
|
26 |
+
|
27 |
+
file_extension = file.name.split('.')[-1].lower()
|
28 |
+
|
29 |
+
if file_extension == 'pdf':
|
30 |
+
text = extract_text_from_pdf(file)
|
31 |
+
elif file_extension == 'docx':
|
32 |
+
text = extract_text_from_docx(file)
|
33 |
+
else:
|
34 |
+
return "Unsupported file format. Please upload a PDF or DOCX file."
|
35 |
+
|
36 |
+
prompt = f"Convert the following news article into a short children's story (maximum 200 words):\n\n{text}\n\nChildren's story:"
|
37 |
+
|
38 |
+
inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024)
|
39 |
+
|
40 |
+
with torch.no_grad():
|
41 |
+
outputs = model.generate(
|
42 |
+
**inputs,
|
43 |
+
max_new_tokens=200,
|
44 |
+
temperature=0.7,
|
45 |
+
top_p=0.95,
|
46 |
+
do_sample=True
|
47 |
+
)
|
48 |
+
|
49 |
+
story = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
50 |
+
return story.split("Children's story:")[-1].strip()
|
51 |
+
|
52 |
+
iface = gr.Interface(
|
53 |
+
fn=convert_to_story,
|
54 |
+
inputs=gr.File(label="Upload PDF or DOCX file"),
|
55 |
+
outputs="text",
|
56 |
+
title="News to Children's Story Converter",
|
57 |
+
description="Upload a news article in PDF or DOCX format to convert it into a short children's story."
|
58 |
+
)
|
59 |
+
|
60 |
+
iface.launch()
|