import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch import fitz # PyMuPDF from docx import Document # Load model and tokenizer model_name = "microsoft/phi-2" tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True) model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True, torch_dtype=torch.float16) def extract_text_from_pdf(file): doc = fitz.open(stream=file.read(), filetype="pdf") text = "" for page in doc: text += page.get_text() return text def extract_text_from_docx(file): doc = Document(file) return "\n".join([paragraph.text for paragraph in doc.paragraphs]) def convert_to_story(file): if file is None: return "Please upload a file." file_extension = file.name.split('.')[-1].lower() if file_extension == 'pdf': text = extract_text_from_pdf(file) elif file_extension == 'docx': text = extract_text_from_docx(file) else: return "Unsupported file format. Please upload a PDF or DOCX file." prompt = f"Convert the following news article into a short children's story (maximum 200 words):\n\n{text}\n\nChildren's story:" inputs = tokenizer(prompt, return_tensors="pt", truncation=True, max_length=1024) with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=200, temperature=0.7, top_p=0.95, do_sample=True ) story = tokenizer.decode(outputs[0], skip_special_tokens=True) return story.split("Children's story:")[-1].strip() iface = gr.Interface( fn=convert_to_story, inputs=gr.File(label="Upload PDF or DOCX file"), outputs="text", title="News to Children's Story Converter", description="Upload a news article in PDF or DOCX format to convert it into a short children's story." ) iface.launch()