Spaces:
Running
Running
from typing import Dict, List | |
import numpy as np | |
class PreTrainedPipeline(): | |
def __init__(self, path=""): | |
# IMPLEMENT_THIS | |
# Preload all the elements you are going to need at inference. | |
# For instance your model, processors, tokenizer that might be needed. | |
# This function is only called once, so do all the heavy processing I/O here""" | |
raise NotImplementedError( | |
"Please implement PreTrainedPipeline __init__ function" | |
) | |
def __call__(self, inputs: str) -> List[List[Dict[str, float]]]: | |
""" | |
Args: | |
inputs (:obj:`str`): | |
a string containing some text | |
Return: | |
A :obj:`list`:. The object returned should be a list of one list like [[{"label": 0.9939950108528137}]] containing : | |
- "label": A string representing what the label/class is. There can be multiple labels. | |
- "score": A score between 0 and 1 describing how confident the model is for this label/class. | |
""" | |
# IMPLEMENT_THIS | |
raise NotImplementedError( | |
"Please implement PreTrainedPipeline __call__ function" | |
) |