Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,32 +1,42 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
-
|
5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
6 |
-
"""
|
7 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
8 |
|
9 |
-
|
10 |
-
def respond(
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
messages = [{"role": "system", "content": system_message}]
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
26 |
messages.append({"role": "user", "content": message})
|
27 |
|
|
|
28 |
response = ""
|
29 |
|
|
|
30 |
for message in client.chat_completion(
|
31 |
messages,
|
32 |
max_tokens=max_tokens,
|
@@ -34,15 +44,12 @@ def respond(
|
|
34 |
temperature=temperature,
|
35 |
top_p=top_p,
|
36 |
):
|
|
|
37 |
token = message.choices[0].delta.content
|
38 |
-
|
39 |
response += token
|
40 |
yield response
|
41 |
|
42 |
-
|
43 |
-
"""
|
44 |
-
System Prompt Modification for NLPToolkit Agent
|
45 |
-
"""
|
46 |
default_system_message = (
|
47 |
"You are NLPToolkit Agent, an advanced natural language processing assistant. "
|
48 |
"You specialize in tasks such as text summarization, sentiment analysis, text classification, "
|
@@ -50,39 +57,49 @@ default_system_message = (
|
|
50 |
"Assist users with clear, concise, and actionable outputs."
|
51 |
)
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
"""
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
86 |
|
87 |
-
# Run the
|
88 |
-
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import InferenceClient
|
3 |
|
4 |
+
# Hugging Face client initialization
|
|
|
|
|
5 |
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
6 |
|
7 |
+
# Function to handle NLP responses and interaction with the model
|
8 |
+
def respond(message, history, system_message, max_tokens, temperature, top_p):
|
9 |
+
"""
|
10 |
+
Function to handle user message and generate a response using the NLP model.
|
11 |
+
|
12 |
+
Parameters:
|
13 |
+
message (str): User's current message/input.
|
14 |
+
history (list): List of tuples representing conversation history (user's and assistant's messages).
|
15 |
+
system_message (str): System-level instructions to the assistant to guide its responses.
|
16 |
+
max_tokens (int): Maximum number of tokens to generate in the response.
|
17 |
+
temperature (float): Degree of randomness in the response generation.
|
18 |
+
top_p (float): Controls the diversity of the response using nucleus sampling.
|
19 |
+
|
20 |
+
Yields:
|
21 |
+
str: Streamed response as tokens are generated.
|
22 |
+
"""
|
23 |
+
# Prepare the message for the assistant, including system-level instructions and history.
|
24 |
messages = [{"role": "system", "content": system_message}]
|
25 |
+
|
26 |
+
# Loop through the history and add past conversation to the messages
|
27 |
+
for user_message, assistant_message in history:
|
28 |
+
if user_message:
|
29 |
+
messages.append({"role": "user", "content": user_message})
|
30 |
+
if assistant_message:
|
31 |
+
messages.append({"role": "assistant", "content": assistant_message})
|
32 |
+
|
33 |
+
# Append the current user message to the conversation
|
34 |
messages.append({"role": "user", "content": message})
|
35 |
|
36 |
+
# Initialize the response variable
|
37 |
response = ""
|
38 |
|
39 |
+
# Get the response stream from the Hugging Face model
|
40 |
for message in client.chat_completion(
|
41 |
messages,
|
42 |
max_tokens=max_tokens,
|
|
|
44 |
temperature=temperature,
|
45 |
top_p=top_p,
|
46 |
):
|
47 |
+
# Extract the token content and append it to the response
|
48 |
token = message.choices[0].delta.content
|
|
|
49 |
response += token
|
50 |
yield response
|
51 |
|
52 |
+
# System prompt to guide the assistant's behavior
|
|
|
|
|
|
|
53 |
default_system_message = (
|
54 |
"You are NLPToolkit Agent, an advanced natural language processing assistant. "
|
55 |
"You specialize in tasks such as text summarization, sentiment analysis, text classification, "
|
|
|
57 |
"Assist users with clear, concise, and actionable outputs."
|
58 |
)
|
59 |
|
60 |
+
# Create the Gradio interface for user interaction
|
61 |
+
def create_interface():
|
62 |
+
"""
|
63 |
+
Create and return a Gradio interface for the NLPToolkit Agent with customizable parameters.
|
64 |
+
|
65 |
+
Parameters:
|
66 |
+
None
|
67 |
+
|
68 |
+
Returns:
|
69 |
+
gr.Interface: The Gradio interface object.
|
70 |
+
"""
|
71 |
+
return gr.ChatInterface(
|
72 |
+
respond,
|
73 |
+
additional_inputs=[
|
74 |
+
gr.Textbox(
|
75 |
+
value=default_system_message,
|
76 |
+
label="System Message"
|
77 |
+
),
|
78 |
+
gr.Slider(
|
79 |
+
minimum=1,
|
80 |
+
maximum=2048,
|
81 |
+
value=512,
|
82 |
+
step=1,
|
83 |
+
label="Max New Tokens"
|
84 |
+
),
|
85 |
+
gr.Slider(
|
86 |
+
minimum=0.1,
|
87 |
+
maximum=4.0,
|
88 |
+
value=0.7,
|
89 |
+
step=0.1,
|
90 |
+
label="Temperature"
|
91 |
+
),
|
92 |
+
gr.Slider(
|
93 |
+
minimum=0.1,
|
94 |
+
maximum=1.0,
|
95 |
+
value=0.95,
|
96 |
+
step=0.05,
|
97 |
+
label="Top-p (Nucleus Sampling)"
|
98 |
+
),
|
99 |
+
],
|
100 |
+
)
|
101 |
|
102 |
+
# Run the Gradio interface
|
103 |
+
if __name__ == "__main__":
|
104 |
+
demo = create_interface()
|
105 |
+
demo.launch()
|