File size: 1,241 Bytes
e72331f
 
175787a
e72331f
175787a
e72331f
 
175787a
 
 
 
e72331f
 
 
175787a
 
1db160d
 
e72331f
 
 
 
557cf37
175787a
e72331f
175787a
 
 
e72331f
 
 
557cf37
175787a
 
557cf37
 
e72331f
175787a
e72331f
557cf37
175787a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import streamlit as st
from transformers import pipeline
from huggingface_hub import login

# Title of the Streamlit app
st.title("WhiteRabbitNEO Q&A App")

# Hugging Face API token input (only required if the model is private)
token = st.text_input("Enter your Hugging Face token (if required):", type="password")

# Load the model
@st.cache_resource
def load_model():
    try:
        if token:
            login(token=token)
        model = pipeline("question-answering", model="WhiteRabbitNEO")
        return model
    except Exception as e:
        st.error(f"Failed to load model: {e}")
        return None

# Load the model
model = load_model()

if model:
    question = st.text_input("Ask a question:")
    context = st.text_area("Provide context for your question:")

    if st.button("Get Answer"):
        if question and context:
            try:
                answer = model(question=question, context=context)
                st.write("Answer:", answer['answer'])
            except Exception as e:
                st.error(f"Error generating answer: {e}")
        else:
            st.warning("Please provide both a question and context.")
else:
    st.error("Model could not be loaded. Please check your configuration.")