Rename requirem.txtapp.py to app.pu
Browse files- app.pu +62 -0
- requirem.txtapp.py +0 -7
app.pu
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
from sklearn.datasets import load_iris
|
4 |
+
from sklearn.ensemble import RandomForestClassifier
|
5 |
+
from sklearn.model_selection import train_test_split
|
6 |
+
from sklearn.metrics import accuracy_score
|
7 |
+
|
8 |
+
# Set the title of the app
|
9 |
+
st.title("Iris Flower Species Prediction App")
|
10 |
+
|
11 |
+
# Load the Iris dataset
|
12 |
+
iris = load_iris()
|
13 |
+
X = pd.DataFrame(iris.data, columns=iris.feature_names)
|
14 |
+
y = pd.Series(iris.target, name='species')
|
15 |
+
|
16 |
+
# Split the dataset into training and testing sets
|
17 |
+
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
|
18 |
+
|
19 |
+
# Initialize the RandomForestClassifier
|
20 |
+
clf = RandomForestClassifier(n_estimators=100, random_state=42)
|
21 |
+
clf.fit(X_train, y_train)
|
22 |
+
|
23 |
+
# Sidebar for user input features
|
24 |
+
st.sidebar.header("Input Features")
|
25 |
+
|
26 |
+
def user_input_features():
|
27 |
+
sepal_length = st.sidebar.slider('Sepal length (cm)', float(X['sepal length (cm)'].min()), float(X['sepal length (cm)'].max()), float(X['sepal length (cm)'].mean()))
|
28 |
+
sepal_width = st.sidebar.slider('Sepal width (cm)', float(X['sepal width (cm)'].min()), float(X['sepal width (cm)'].max()), float(X['sepal width (cm)'].mean()))
|
29 |
+
petal_length = st.sidebar.slider('Petal length (cm)', float(X['petal length (cm)'].min()), float(X['petal length (cm)'].max()), float(X['petal length (cm)'].mean()))
|
30 |
+
petal_width = st.sidebar.slider('Petal width (cm)', float(X['petal width (cm)'].min()), float(X['petal width (cm)'].max()), float(X['petal width (cm)'].mean()))
|
31 |
+
data = {'sepal length (cm)': sepal_length,
|
32 |
+
'sepal width (cm)': sepal_width,
|
33 |
+
'petal length (cm)': petal_length,
|
34 |
+
'petal width (cm)': petal_width}
|
35 |
+
features = pd.DataFrame(data, index=[0])
|
36 |
+
return features
|
37 |
+
|
38 |
+
input_df = user_input_features()
|
39 |
+
|
40 |
+
# Main panel
|
41 |
+
st.subheader("User Input Features")
|
42 |
+
|
43 |
+
# Display the user input features
|
44 |
+
st.write(input_df)
|
45 |
+
|
46 |
+
# Make predictions
|
47 |
+
prediction = clf.predict(input_df)
|
48 |
+
prediction_proba = clf.predict_proba(input_df)
|
49 |
+
|
50 |
+
# Display the prediction
|
51 |
+
st.subheader("Prediction")
|
52 |
+
st.write(iris.target_names[prediction][0])
|
53 |
+
|
54 |
+
# Display the prediction probability
|
55 |
+
st.subheader("Prediction Probability")
|
56 |
+
st.write(pd.DataFrame(prediction_proba, columns=iris.target_names))
|
57 |
+
|
58 |
+
# Evaluate model accuracy
|
59 |
+
y_pred = clf.predict(X_test)
|
60 |
+
accuracy = accuracy_score(y_test, y_pred)
|
61 |
+
st.subheader("Model Accuracy")
|
62 |
+
st.write(f"{accuracy * 100:.2f}%")
|
requirem.txtapp.py
DELETED
@@ -1,7 +0,0 @@
|
|
1 |
-
streamlit
|
2 |
-
pandas
|
3 |
-
numpy
|
4 |
-
scikit-learn
|
5 |
-
Pillow
|
6 |
-
PyPDF2
|
7 |
-
transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|