import streamlit as st from transformers import pipeline # Title and Description st.title("WhiteRabbitNEO Q&A App") st.write("Ask any question, and WhiteRabbitNEO will provide an answer.") # Initialize the model pipeline @st.cache_resource def load_model(): try: # Simple model pipeline initialization model = pipeline("question-answering", model="WhiteRabbitNEO") return model except Exception as e: st.error(f"Failed to load model: {e}") return None # Load the model qa_pipeline = load_model() # Simple input section: Ask question and provide context if qa_pipeline: question = st.text_input("Your question:") context = st.text_area("Context (provide background info for the question):") # Button to trigger the model for prediction if st.button("Get Answer"): if question and context: try: # Get prediction from the model result = qa_pipeline(question=question, context=context) # Display the answer st.write(f"**Answer:** {result['answer']}") st.write(f"**Confidence Score:** {result['score']:.2f}") except Exception as e: st.error(f"Error generating answer: {e}") else: st.warning("Please fill both the question and context fields.") else: st.error("Model could not be loaded. Please check your configuration.")