import streamlit as st from transformers import pipeline # Title and Description st.title("WhiteRabbitNEO Q&A App") st.write("Ask any question, and WhiteRabbitNEO will provide an answer.") # Initialize the model pipeline @st.cache_resource def load_model(): try: # Replace with the correct model if needed (e.g., ensure WhiteRabbitNEO exists) model = pipeline("question-answering", model="WhiteRabbitNEO") return model except Exception as e: st.error(f"Failed to load model: {e}") return None qa_pipeline = load_model() # Input Section if qa_pipeline: question = st.text_input("Enter your question:") context = st.text_area("Provide some context for the question:") # Output Section if st.button("Get Answer"): if question and context: with st.spinner("Thinking..."): try: result = qa_pipeline(question=question, context=context) st.success("Answer:") st.write(result["answer"]) st.write(f"Confidence: {result['score']:.2f}") except Exception as e: st.error(f"Error generating answer: {e}") else: st.warning("Please provide both a question and context.") else: st.error("Failed to load the question-answering model. Please try again later.")