Spaces:
Runtime error
Runtime error
Port docker to space
Browse files
app.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from huggingface_hub import hf_hub_download, HfApi
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class Model:
|
| 8 |
+
"""
|
| 9 |
+
Class containing the info of a model.
|
| 10 |
+
|
| 11 |
+
:param name: Name of the model
|
| 12 |
+
:param elo: Elo rating of the model
|
| 13 |
+
:param games_played: Number of games played by the model (useful if we implement sigma uncertainty)
|
| 14 |
+
"""
|
| 15 |
+
def __init__(self, name, elo=1200, games_played=0):
|
| 16 |
+
self.name = name
|
| 17 |
+
self.elo = elo
|
| 18 |
+
self.games_played = games_played
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
class Matchmaking:
|
| 22 |
+
"""
|
| 23 |
+
Class managing the matchmaking between the models.
|
| 24 |
+
|
| 25 |
+
:param models: List of models
|
| 26 |
+
:param queue: Temporary list of models used for the matching process
|
| 27 |
+
:param k: Dev coefficient
|
| 28 |
+
:param max_diff: Maximum difference considered between two models' elo
|
| 29 |
+
:param matches: Dictionary containing the match history (to later upload as CSV)
|
| 30 |
+
"""
|
| 31 |
+
def __init__(self, models, env):
|
| 32 |
+
self.models = models
|
| 33 |
+
self.env = env
|
| 34 |
+
self.queue = self.models.copy()
|
| 35 |
+
self.k = 20
|
| 36 |
+
self.max_diff = 500
|
| 37 |
+
self.matches = {
|
| 38 |
+
"model1": [],
|
| 39 |
+
"model2": [],
|
| 40 |
+
"result": [],
|
| 41 |
+
"datetime": [],
|
| 42 |
+
"env": []
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
def run(self):
|
| 46 |
+
"""
|
| 47 |
+
Run the matchmaking process.
|
| 48 |
+
Add models to the queue, shuffle it, and match the models one by one to models with close ratings.
|
| 49 |
+
Compute the new elo for each model after each match and add the match to the match history.
|
| 50 |
+
"""
|
| 51 |
+
for i in range(10):
|
| 52 |
+
self.queue = self.models.copy()
|
| 53 |
+
random.shuffle(self.queue)
|
| 54 |
+
while len(self.queue) > 1:
|
| 55 |
+
model1 = self.queue.pop(0)
|
| 56 |
+
model2 = self.queue.pop(self.find_n_closest_indexes(model1, 10))
|
| 57 |
+
result = match(model1, model2)
|
| 58 |
+
self.compute_elo(model1, model2, result)
|
| 59 |
+
self.matches["model1"].append(model1.name)
|
| 60 |
+
self.matches["model2"].append(model2.name)
|
| 61 |
+
self.matches["result"].append(result)
|
| 62 |
+
self.matches["datetime"].append(datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"))
|
| 63 |
+
self.matches["env"].append(self.env)
|
| 64 |
+
|
| 65 |
+
def compute_elo(self, model1, model2, result):
|
| 66 |
+
""" Compute the new elo for each model based on a match result. """
|
| 67 |
+
delta = model1.elo - model2.elo
|
| 68 |
+
win_probability = 1 / (1 + 10 ** (-delta / 500))
|
| 69 |
+
model1.elo += self.k * (result - win_probability)
|
| 70 |
+
model2.elo -= self.k * (result - win_probability)
|
| 71 |
+
|
| 72 |
+
def find_n_closest_indexes(self, model, n) -> int:
|
| 73 |
+
"""
|
| 74 |
+
Get a model index with a fairly close rating. If no model is found, return the last model in the queue.
|
| 75 |
+
We don't always pick the closest rating to add variety to the matchups.
|
| 76 |
+
|
| 77 |
+
:param model: Model to compare
|
| 78 |
+
:param n: Number of close models from which to pick a candidate
|
| 79 |
+
:return: id of the chosen candidate
|
| 80 |
+
"""
|
| 81 |
+
indexes = []
|
| 82 |
+
closest_diffs = [9999999] * n
|
| 83 |
+
for i, m in enumerate(self.queue):
|
| 84 |
+
if m.name == model.name:
|
| 85 |
+
continue
|
| 86 |
+
diff = abs(m.elo - model.elo)
|
| 87 |
+
if diff < max(closest_diffs):
|
| 88 |
+
closest_diffs.append(diff)
|
| 89 |
+
closest_diffs.sort()
|
| 90 |
+
closest_diffs.pop()
|
| 91 |
+
indexes.append(i)
|
| 92 |
+
random.shuffle(indexes)
|
| 93 |
+
return indexes[0]
|
| 94 |
+
|
| 95 |
+
def to_csv(self):
|
| 96 |
+
""" Save the match history as a CSV file to the hub. """
|
| 97 |
+
df = pd.DataFrame(columns=['name', 'elo'])
|
| 98 |
+
for model in self.models:
|
| 99 |
+
df = pd.concat([df, pd.DataFrame([[model.name, model.elo]], columns=['name', 'elo'])])
|
| 100 |
+
df.to_csv('elo.csv', index=False)
|
| 101 |
+
df_matches = pd.DataFrame(self.matches)
|
| 102 |
+
date = datetime.now()
|
| 103 |
+
df_matches.to_csv(f"matches/{self.env}__{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv", index=False)
|
| 104 |
+
api.upload_file(
|
| 105 |
+
path_or_fileobj=f"matches/{self.env}__{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv",
|
| 106 |
+
path_in_repo=f"match_history/{self.env}__{date.strftime('%Y-%m-%d_%H-%M-%S_%f')}.csv",
|
| 107 |
+
repo_id="CarlCochet/BotFights"
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
|
| 111 |
+
def match(model1, model2) -> float:
|
| 112 |
+
"""
|
| 113 |
+
!!! Current code is placeholder !!!
|
| 114 |
+
TODO: Launch a Unity process with the 2 models and get the result of the match
|
| 115 |
+
|
| 116 |
+
:param model1: First Model object
|
| 117 |
+
:param model2: Second Model object
|
| 118 |
+
:return: match result (0: model1 lost, 0.5: draw, 1: model1 won)
|
| 119 |
+
"""
|
| 120 |
+
result = random.randint(0, 2) / 2
|
| 121 |
+
return result
|
| 122 |
+
|
| 123 |
+
|
| 124 |
+
def get_models_list() -> list:
|
| 125 |
+
"""
|
| 126 |
+
!!! Current code is placeholder !!!
|
| 127 |
+
TODO: Create a list of Model objects from the models found on the hub
|
| 128 |
+
|
| 129 |
+
:return: list of Model objects
|
| 130 |
+
"""
|
| 131 |
+
models = []
|
| 132 |
+
hf_hub_download(
|
| 133 |
+
repo_id="CarlCochet/BotFights",
|
| 134 |
+
filename="elo.csv",
|
| 135 |
+
)
|
| 136 |
+
data = pd.read_csv("elo.csv")
|
| 137 |
+
for i, row in data.iterrows():
|
| 138 |
+
models.append(Model(row["name"], row["elo"]))
|
| 139 |
+
return models
|
| 140 |
+
|
| 141 |
+
|
| 142 |
+
def init_matchmaking():
|
| 143 |
+
models = get_models_list()
|
| 144 |
+
matchmaking = Matchmaking(models, "snowball-fight")
|
| 145 |
+
matchmaking.run()
|
| 146 |
+
matchmaking.to_csv()
|
| 147 |
+
|
| 148 |
+
|
| 149 |
+
if __name__ == "__main__":
|
| 150 |
+
print("It's running!")
|
| 151 |
+
api = HfApi()
|
| 152 |
+
init_matchmaking()
|