Spaces:
Sleeping
Sleeping
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente. | |
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos | |
# | |
# Contato: | |
# Carlos Rodrigues dos Santos | |
# [email protected] | |
# | |
# Repositórios e Projetos Relacionados: | |
# GitHub: https://github.com/carlex22/Aduc-sdr | |
# YouTube (Resultados): https://m.youtube.com/channel/UC3EgoJi_Fv7yuDpvfYNtoIQ | |
# Hugging Face: https://huggingface.co/spaces/Carlexx/ADUC-Sdr_Gemini_Drem0_Ltx_Video60seconds/ | |
# | |
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo | |
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela | |
# Free Software Foundation, seja a versão 3 da Licença, ou | |
# (a seu critério) qualquer versão posterior. | |
# | |
# Este programa é distribuído na esperança de que seja útil, | |
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de | |
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a | |
# Licença Pública Geral Affero da GNU para mais detalhes. | |
# | |
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU | |
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>. | |
# --- app.py (ADUC-SDR-5.2: Correção Final de Indentação) --- | |
import gradio as gr | |
import torch | |
import os | |
import re | |
import yaml | |
from PIL import Image, ImageOps, ExifTags | |
import shutil | |
import subprocess | |
import google.generativeai as genai | |
import numpy as np | |
import imageio | |
from pathlib import Path | |
import json | |
import time | |
import math | |
import threading | |
from queue import Queue | |
import sys | |
import traceback | |
os.environ["TOKENIZERS_PARALLELISM"] = "false" | |
from flux_kontext_helpers import flux_kontext_singleton | |
from ltx_manager_helpers import ltx_manager_singleton | |
from ltx_upscaler_manager_helpers import ltx_upscaler_manager_singleton | |
WORKSPACE_DIR = "aduc_workspace" | |
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") | |
# ====================================================================================== | |
# SEÇÃO 0: LOGGING CONTROLADO PARA A UI | |
# ====================================================================================== | |
log_history = "" | |
log_lock = threading.Lock() | |
def log_message(message): | |
global log_history | |
print(message, flush=True) | |
with log_lock: | |
log_history += str(message) + "\n" | |
def clear_logs(): | |
global log_history | |
with log_lock: | |
log_history = "" | |
def get_console_logs(): | |
with log_lock: | |
return log_history | |
# ====================================================================================== | |
# SEÇÃO 1: FUNÇÕES UTILITÁRIAS E DE PROCESSAMENTO DE MÍDIA | |
# ====================================================================================== | |
def robust_json_parser(raw_text: str) -> dict: | |
clean_text = raw_text.strip() | |
try: | |
start_index = clean_text.find('{'); end_index = clean_text.rfind('}') | |
if start_index != -1 and end_index != -1 and end_index > start_index: | |
json_str = clean_text[start_index : end_index + 1] | |
return json.loads(json_str) | |
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.") | |
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}") | |
def process_image_to_square(image_path: str, size: int, output_filename: str = None) -> str: | |
if not image_path: return None | |
try: | |
img = Image.open(image_path).convert("RGB") | |
img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS) | |
if output_filename: output_path = os.path.join(WORKSPACE_DIR, output_filename) | |
else: output_path = os.path.join(WORKSPACE_DIR, f"edited_ref_{time.time()}.png") | |
img_square.save(output_path) | |
return output_path | |
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}") | |
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str: | |
try: | |
command = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"" | |
subprocess.run(command, shell=True, check=True, text=True) | |
return output_path | |
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {getattr(e, 'stderr', str(e))}") | |
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str: | |
try: | |
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\"" | |
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True) | |
total_frames = int(result.stdout.strip()) | |
if n_frames >= total_frames: | |
shutil.copyfile(input_path, output_path) | |
return output_path | |
start_frame = total_frames - n_frames | |
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\"" | |
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True) | |
return output_path | |
except (subprocess.CalledProcessError, ValueError) as e: raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}") | |
def concatenate_final_video(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()): | |
if not fragment_paths: | |
raise gr.Error("Nenhum fragmento de vídeo para concatenar.") | |
progress(0.1, desc="Preparando fragmentos para a montagem final..."); | |
try: | |
list_file_path = os.path.abspath(os.path.join(WORKSPACE_DIR, f"concat_list_final_{time.time()}.txt")) | |
final_output_path = os.path.abspath(os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")) | |
temp_files_for_concat = [] | |
duration_for_non_cut_fragments = max(1, int(fragment_duration_frames - eco_video_frames)) | |
sorted_fragment_paths = sorted(fragment_paths) | |
for i, p in enumerate(sorted_fragment_paths): | |
is_last_fragment = (i == len(sorted_fragment_paths) - 1) | |
if "_cut" in os.path.basename(p) or is_last_fragment: | |
temp_files_for_concat.append(os.path.abspath(p)) | |
else: | |
temp_path = os.path.join(WORKSPACE_DIR, f"final_temp_concat_{i}.mp4") | |
trim_video_to_frames(p, temp_path, duration_for_non_cut_fragments) | |
temp_files_for_concat.append(os.path.abspath(temp_path)) | |
progress(0.8, desc="Concatenando clipe final..."); | |
with open(list_file_path, "w") as f: | |
for p_temp in temp_files_for_concat: | |
f.write(f"file '{p_temp}'\n") | |
ffmpeg_command = f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"" | |
subprocess.run(ffmpeg_command, shell=True, check=True, text=True) | |
progress(1.0, desc="Montagem final concluída!"); | |
return final_output_path | |
except subprocess.CalledProcessError as e: | |
raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr if e.stderr else 'Nenhum erro reportado.'}") | |
except Exception as e: | |
raise gr.Error(f"Um erro ocorreu durante a concatenação final: {e}") | |
def extract_image_exif(image_path: str) -> str: | |
try: | |
img = Image.open(image_path); exif_data = img._getexif() | |
if not exif_data: return "No EXIF metadata found." | |
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS } | |
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength'] | |
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif) | |
return metadata_str if metadata_str else "No relevant EXIF metadata found." | |
except Exception: return "Could not read EXIF data." | |
# ====================================================================================== | |
# SEÇÃO 2: ORQUESTRADORES DE IA | |
# ====================================================================================== | |
def run_storyboard_generation(num_fragments: int, prompt: str, reference_paths: list): | |
clear_logs() | |
log_message("--- ETAPA 1: GERANDO ROTEIRO ---") | |
log_message(f"Prompt do usuário: '{prompt}'") | |
if not reference_paths: raise gr.Error("Por favor, forneça pelo menos uma imagem de referência.") | |
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
main_ref_path = reference_paths[0] | |
exif_metadata = extract_image_exif(main_ref_path) | |
prompt_file = "prompts/unified_storyboard_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata) | |
genai.configure(api_key=GEMINI_API_KEY) | |
model = genai.GenerativeModel('gemini-2.5-flash') | |
model_contents = [director_prompt] | |
for i, img_path in enumerate(reference_paths): | |
model_contents.append(f"Reference Image {i+1}:") | |
model_contents.append(Image.open(img_path)) | |
log_message(f"Gerando roteiro com {len(reference_paths)} imagens de referência...") | |
response = model.generate_content(model_contents) | |
try: | |
storyboard_data = robust_json_parser(response.text) | |
storyboard = storyboard_data.get("scene_storyboard", []) | |
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}") | |
log_message(f"Roteiro de {len(storyboard)} cenas gerado com sucesso.") | |
return storyboard | |
except Exception as e: | |
log_message(f"!!!! ERRO AO GERAR ROTEIRO !!!!\n{e}\nResposta da IA:\n{response.text}") | |
raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}.") | |
def run_keyframe_generation(storyboard, fixed_reference_paths, keyframe_resolution, global_prompt, progress=gr.Progress()): | |
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.") | |
if not fixed_reference_paths: raise gr.Error("A imagem de referência inicial é obrigatória.") | |
initial_ref_image_path = fixed_reference_paths[0] | |
width, height = keyframe_resolution, keyframe_resolution | |
keyframe_paths_for_video = [] | |
scene_history = "N/A" | |
wrapper_prompt_path = os.path.join(os.path.dirname(__file__), "prompts/flux_composition_wrapper_prompt.txt") | |
with open(wrapper_prompt_path, "r", encoding="utf-8") as f: kontext_template = f.read() | |
director_prompt_path = os.path.join(os.path.dirname(__file__), "prompts/director_composition_prompt.txt") | |
with open(director_prompt_path, "r", encoding="utf-8") as f: director_template = f.read() | |
try: | |
genai.configure(api_key=GEMINI_API_KEY) | |
model = genai.GenerativeModel('gemini-2.5-flash') | |
for i, scene_description in enumerate(storyboard): | |
progress(i / len(storyboard), desc=f"Compondo Keyframe {i+1}/{len(storyboard)}") | |
log_message(f"\n--- COMPONDO KEYFRAME {i+1}/{len(storyboard)} ---") | |
last_three_paths = ([initial_ref_image_path] + keyframe_paths_for_video)[-3:] | |
log_message(f" - Diretor de Cena está analisando o contexto...") | |
director_prompt = director_template.format(global_prompt=global_prompt, scene_history=scene_history, current_scene_desc=scene_description) | |
model_contents, image_map, current_image_index = [], {}, 1 | |
for path in last_three_paths: | |
if path not in image_map.values(): | |
image_map[current_image_index] = path | |
model_contents.extend([f"IMG-{current_image_index}:", Image.open(path)]) | |
current_image_index += 1 | |
for path in fixed_reference_paths: | |
if path not in image_map.values(): | |
image_map[current_image_index] = path | |
model_contents.extend([f"IMG-{current_image_index}:", Image.open(path)]) | |
current_image_index += 1 | |
model_contents.append(director_prompt) | |
response_text = model.generate_content(model_contents).text | |
composition_prompt_with_tags = response_text.strip() | |
referenced_indices = [int(idx) for idx in re.findall(r'\[IMG-(\d+)\]', composition_prompt_with_tags)] | |
current_reference_paths = [image_map[idx] for idx in sorted(list(set(referenced_indices))) if idx in image_map] | |
if not current_reference_paths: current_reference_paths = [last_three_paths[-1]] | |
reference_images_pil = [Image.open(p) for p in current_reference_paths] | |
final_kontext_prompt = re.sub(r'\[IMG-\d+\]', '', composition_prompt_with_tags).strip() | |
log_message(f" - Prompt Final do Diretor: \"{final_kontext_prompt}\"") | |
scene_history += f"Scene {i+1}: {final_kontext_prompt}\n" | |
final_kontext_prompt_wrapped = kontext_template.format(target_prompt=final_kontext_prompt) | |
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png") | |
image = flux_kontext_singleton.generate_image(reference_images=reference_images_pil, prompt=final_kontext_prompt_wrapped, width=width, height=height, seed=int(time.time())) | |
image.save(output_path) | |
keyframe_paths_for_video.append(output_path) | |
except Exception as e: | |
log_message(f"!!!! ERRO AO GERAR KEYFRAME !!!!\n{traceback.format_exc()}") | |
raise gr.Error(f"O Compositor (FluxKontext) ou o Diretor de Cena (Gemini) falhou: {e}") | |
log_message("\nComposição de todos os keyframes concluída.") | |
final_keyframes = keyframe_paths_for_video | |
return final_keyframes, final_keyframes | |
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str): | |
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
try: | |
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-2.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc) | |
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path) | |
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt] | |
response = model.generate_content(model_contents) | |
return response.text.strip() | |
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}") | |
def get_transition_decision(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, midpoint_scene_description, dest_scene_desc): | |
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") | |
try: | |
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-2.5-flash'); prompt_file = "prompts/transition_decision_prompt.txt" | |
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() | |
continuity_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=midpoint_scene_description, destination_scene_description=dest_scene_desc) | |
mem_img = Image.open(memory_media_path) if isinstance(memory_media_path, str) else memory_media_path | |
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path) | |
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, continuity_prompt] | |
response = model.generate_content(model_contents) | |
decision_data = robust_json_parser(response.text) | |
if "transition_type" not in decision_data or "motion_prompt" not in decision_data: raise ValueError("A resposta da IA não contém as chaves 'transition_type' ou 'motion_prompt'.") | |
return decision_data | |
except Exception as e: raise gr.Error(f"O Diretor de Continuidade (IA) falhou: {e}. Resposta: {getattr(e, 'text', str(e))}") | |
# ====================================================================================== | |
# SEÇÃO 3: LÓGICA DE PRODUÇÃO COM FILAS ASSÍNCRONAS | |
# ====================================================================================== | |
def generation_worker( | |
tasks_list, upscale_queue, progress, | |
prompt_geral, scene_storyboard, seed, cfg, | |
video_total_frames_ltx, video_fps, num_inference_steps, use_attention_slicing, | |
decode_timestep, image_cond_noise_scale, fragment_duration_frames, eco_video_frames, | |
mid_cond_strength, dest_cond_strength, low_res_width, low_res_height | |
): | |
kinetic_memory_path = None | |
story_history = "" | |
total_tasks = len(tasks_list) | |
for i, task_info in enumerate(tasks_list): | |
fragment_num = i + 1 | |
progress(i / total_tasks, desc=f"Decidindo/Gerando Low-Res {fragment_num}/{total_tasks}...") | |
start_path = task_info['start_path'] | |
destination_path = task_info['destination_path'] | |
if i == 0: | |
dest_scene_desc = scene_storyboard[i] | |
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc) | |
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, video_total_frames_ltx - 1, dest_cond_strength)] | |
transition_type = "continuous" | |
else: | |
path_path = start_path | |
path_scene_desc = scene_storyboard[i-1] | |
dest_scene_desc = scene_storyboard[i] | |
decision_data = get_transition_decision(prompt_geral, story_history, kinetic_memory_path, path_path, destination_path, midpoint_scene_description=path_scene_desc, dest_scene_desc=dest_scene_desc) | |
transition_type = decision_data["transition_type"] | |
current_motion_prompt = decision_data["motion_prompt"] | |
mid_cond_frame = int(video_total_frames_ltx - fragment_duration_frames + eco_video_frames) | |
conditioning_items_data = [(kinetic_memory_path, 0, 1.0), (path_path, mid_cond_frame, mid_cond_strength), (destination_path, video_total_frames_ltx - 1, dest_cond_strength)] | |
story_history += f"\n- Ato {fragment_num}: {current_motion_prompt}" | |
log_message(f"--- Gerando Fragmento {fragment_num} ---") | |
log_message(f" - Decisão: {transition_type.upper()}") | |
log_message(f" - Prompt de Movimento: {current_motion_prompt}") | |
output_path_low_res = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_lowres_{transition_type}.mp4") | |
_, _ = ltx_manager_singleton.generate_video_fragment( | |
motion_prompt=current_motion_prompt, conditioning_items_data=conditioning_items_data, | |
width=low_res_width, height=low_res_height, seed=seed, cfg=cfg, | |
video_total_frames=video_total_frames_ltx, video_fps=video_fps, | |
num_inference_steps=num_inference_steps, use_attention_slicing=use_attention_slicing, | |
decode_timestep=decode_timestep, image_cond_noise_scale=image_cond_noise_scale, | |
current_fragment_index=fragment_num, output_path=output_path_low_res, progress=progress | |
) | |
upscale_task = {"input_path": output_path_low_res, "output_path": output_path_low_res.replace("_lowres_", "_highres_"), "video_fps": video_fps} | |
upscale_queue.put(upscale_task) | |
is_last_fragment = (i == total_tasks - 1) | |
if not is_last_fragment and transition_type != "cut": | |
trimmed_fragment_path = output_path_low_res.replace(".mp4", "_trimmed.mp4") | |
trim_video_to_frames(output_path_low_res, trimmed_fragment_path, int(fragment_duration_frames)) | |
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4") | |
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames)) | |
log_message(f" - Eco cinético criado: {os.path.basename(kinetic_memory_path)}") | |
else: | |
kinetic_memory_path = None | |
def upscaling_worker(upscale_queue, final_results_list): | |
while True: | |
task = upscale_queue.get() | |
if task is None: | |
upscale_queue.task_done() | |
break | |
try: | |
log_message(f" - Upscaler iniciando trabalho em: {os.path.basename(task['input_path'])}") | |
upscaled_path = ltx_upscaler_manager_singleton.upscale_video_fragment( | |
video_path_low_res=task['input_path'], output_path=task['output_path'], video_fps=task['video_fps'] | |
) | |
final_results_list.append(upscaled_path) | |
log_message(f" - Upscale concluído para: {os.path.basename(upscaled_path)}") | |
except Exception as e: | |
log_message(f"!!!! ERRO no worker de upscale: {e} !!!!") | |
traceback.print_exc(file=sys.stdout) | |
finally: | |
upscale_queue.task_done() | |
def run_video_production( | |
video_resolution, | |
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing, | |
fragment_duration_frames, mid_cond_strength, dest_cond_strength, num_inference_steps, | |
decode_timestep, image_cond_noise_scale, | |
prompt_geral, keyframe_images_state, scene_storyboard, cfg, | |
progress=gr.Progress() | |
): | |
try: | |
high_res_width, high_res_height = video_resolution, video_resolution | |
low_res_scale = 2 | |
low_res_width = (high_res_width // low_res_scale // 8) * 8 | |
low_res_height = (high_res_height // low_res_scale // 8) * 8 | |
valid_keyframes = [p for p in keyframe_images_state if p is not None and os.path.exists(p)] | |
video_total_frames_user = int(video_duration_seconds * video_fps) | |
video_total_frames_ltx = int(round((float(video_total_frames_user) - 1.0) / 8.0) * 8 + 1) | |
if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("São necessários pelo menos 2 keyframes válidos para produzir uma transição.") | |
log_message(f"\n--- FASE 3: Iniciando Pipeline de Produção Assíncrona ---") | |
seed = int(time.time()) | |
num_transitions = len(valid_keyframes) - 1 | |
generation_tasks = [] | |
for i in range(num_transitions): | |
task_info = {"start_path": valid_keyframes[i], "destination_path": valid_keyframes[i+1]} | |
generation_tasks.append(task_info) | |
log_message("\nTodas as tarefas de geração foram planejadas. Iniciando workers...") | |
upscaling_queue = Queue() | |
final_results_high_res = [] | |
worker_args = ( | |
generation_tasks, upscaling_queue, progress, | |
prompt_geral, scene_storyboard, seed, cfg, | |
video_total_frames_ltx, video_fps, num_inference_steps, use_attention_slicing, | |
decode_timestep, image_cond_noise_scale, fragment_duration_frames, eco_video_frames, | |
mid_cond_strength, dest_cond_strength, low_res_width, low_res_height | |
) | |
gen_worker_thread = threading.Thread(target=generation_worker, args=worker_args) | |
upscale_worker_thread = threading.Thread(target=upscaling_worker, args=(upscaling_queue, final_results_high_res)) | |
gen_worker_thread.start() | |
upscale_worker_thread.start() | |
gen_worker_thread.join() | |
upscaling_queue.put(None) | |
upscale_worker_thread.join() | |
progress(1.0, desc="Produção e upscaling concluídos.") | |
log_message("\nTodos os fragmentos foram processados.") | |
return ( | |
sorted(final_results_high_res), | |
sorted(final_results_high_res), | |
fragment_duration_frames, | |
eco_video_frames | |
) | |
except Exception as e: | |
tb_str = traceback.format_exc() | |
log_message(f"!!!! ERRO CRÍTICO NA PRODUÇÃO DE VÍDEO !!!!\n{tb_str}") | |
raise gr.Error(f"A Produção de Vídeo (LTX) falhou: {e}") | |
# ====================================================================================== | |
# SEÇÃO 4: UI e Lógica de Conexão | |
# ====================================================================================== | |
with gr.Blocks(theme=gr.themes.Soft()) as demo: | |
gr.Markdown(f"# NOVIM-13.1 (Painel de Controle do Diretor)\n*Arquitetura ADUC-SDR com Pipeline Assíncrono*") | |
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR) | |
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True) | |
scene_storyboard_state = gr.State([]) | |
keyframe_images_state = gr.State([]) | |
fragment_list_state = gr.State([]) | |
prompt_geral_state = gr.State("") | |
processed_ref_paths_state = gr.State([]) | |
fragment_duration_state = gr.State() | |
eco_frames_state = gr.State() | |
gr.Markdown("## CONFIGURAÇÕES GLOBAIS DE RESOLUÇÃO") | |
with gr.Row(): | |
video_resolution_selector = gr.Radio([512, 720, 1024], value=1024, label="Resolução Final do Vídeo (px)") | |
keyframe_resolution_selector = gr.Radio([512, 720, 1024], value=512, label="Resolução dos Keyframes (px)") | |
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)") | |
num_fragments_input = gr.Slider(2, 50, 4, step=1, label="Nº de Keyframes a Gerar") | |
reference_gallery = gr.Gallery(label="Imagens de Referência (A primeira é a principal)", type="filepath", columns=4, rows=1, object_fit="contain", height="auto") | |
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary") | |
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)") | |
gr.Markdown("--- \n ## ETAPA 2 & 3: COMPOSIÇÃO E PRODUÇÃO") | |
with gr.Row(): | |
with gr.Column(scale=1): | |
gr.Markdown("Clique no botão para compor os keyframes e iniciar a produção de vídeo automaticamente.") | |
photographer_button = gr.Button("▶️ Compor Keyframes e Produzir Vídeo", variant="primary") | |
with gr.Accordion("Controles Avançados de Produção", open=False): | |
cfg_slider = gr.Slider(0.5, 10.0, 1.0, step=0.1, label="CFG (Guidance Scale)") | |
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (s)", minimum=2.0, maximum=10.0, value=6.0, step=0.5) | |
video_fps_radio = gr.Radio(choices=[8, 16, 24, 32], value=24, label="FPS do Vídeo") | |
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência (Low-Res)", minimum=10, maximum=50, value=28, step=1) | |
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True) | |
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Eco + Déjà Vu)") | |
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (% da Geração Bruta)", minimum=1, maximum=100, value=75, step=1) | |
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1) | |
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05) | |
dest_cond_strength_slider = gr.Slider(label="Força do 'Destino'", minimum=0.1, maximum=1.0, value=1.0, step=0.05) | |
gr.Markdown("---"); gr.Markdown("#### Controles do VAE (Avançado)") | |
decode_timestep_slider = gr.Slider(label="VAE Decode Timestep", minimum=0.0, maximum=0.2, value=0.05, step=0.005) | |
image_cond_noise_scale_slider = gr.Slider(label="VAE Image Cond Noise Scale", minimum=0.0, maximum=0.1, value=0.025, step=0.005) | |
with gr.Column(scale=2): | |
with gr.Tabs(): | |
with gr.TabItem("Keyframes Gerados"): | |
keyframe_gallery_output = gr.Gallery(label="Galeria de Keyframes", object_fit="contain", height="auto", type="filepath", interactive=False) | |
with gr.TabItem("Fragmentos de Vídeo (High-Res)"): | |
video_gallery_output = gr.Gallery(label="Galeria de Fragmentos", object_fit="contain", height="auto", type="video") | |
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Montagem Final)") | |
with gr.Row(): | |
with gr.Column(): | |
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary") | |
final_video_output = gr.Video(label="A Obra-Prima Final") | |
with gr.Accordion("Console de Logs (Diário de Bordo)", open=True): | |
with gr.Row(): | |
console_logs = gr.Textbox( | |
label="Logs da Execução", | |
lines=15, | |
autoscroll=True, | |
interactive=False, | |
show_copy_button=True, | |
scale=10 | |
) | |
refresh_log_button = gr.Button("🔄 Atualizar", scale=1) | |
gr.Markdown( | |
""" | |
--- | |
### A Arquitetura: ADUC-SDR com Pipeline Assíncrono | |
**ADUC (Arquitetura de Unificação Compositiva):** O sistema usa uma equipe de IAs especializadas. Um **Roteirista** cria a história. Um **Diretor de Cena** compõe cada keyframe. Um **Compositor** (`FluxKontext`) cria as imagens. | |
**SDR (Escala Dinâmica e Resiliente):** A produção opera como uma linha de montagem com trabalhadores (pools de GPU) independentes e filas de trabalho. O **Gerador** (`cuda:2`/`cuda:3`) produz um fragmento em baixa resolução e o coloca na fila do **Upscaler**. O Upscaler (`cuda:0`/`cuda:1`) pega o trabalho da fila e o refina para alta resolução, enquanto o Gerador já está produzindo o próximo fragmento. Isso garante que todas as GPUs estejam trabalhando em paralelo para máxima eficiência. | |
""" | |
) | |
# --- Lógica de Conexão dos Componentes --- | |
refresh_log_button.click(fn=get_console_logs, inputs=None, outputs=console_logs) | |
def process_and_run_storyboard(num_fragments, prompt, gallery_files, keyframe_resolution): | |
clear_logs() | |
if not gallery_files: | |
raise gr.Error("Por favor, suba pelo menos uma imagem de referência na galeria.") | |
raw_paths = [item[0] for item in gallery_files] | |
processed_paths = [] | |
for i, path in enumerate(raw_paths): | |
filename = f"processed_ref_{i}_{keyframe_resolution}x{keyframe_resolution}.png" | |
processed_path = process_image_to_square(path, keyframe_resolution, filename) | |
processed_paths.append(processed_path) | |
storyboard = run_storyboard_generation(num_fragments, prompt, processed_paths) | |
return storyboard, prompt, processed_paths | |
def run_keyframes_and_video( | |
# Inputs da Etapa 2 | |
storyboard, fixed_reference_paths, keyframe_resolution, global_prompt, | |
# Inputs da Etapa 3 | |
video_resolution, video_duration_seconds, video_fps, eco_video_frames, | |
use_attention_slicing, fragment_duration_percentage, mid_cond_strength, | |
dest_cond_strength, num_inference_steps, decode_timestep, | |
image_cond_noise_scale, cfg, progress=gr.Progress() | |
): | |
log_message("\n--- INICIANDO ETAPA 2: COMPOSIÇÃO DE KEYFRAMES ---") | |
keyframe_paths, _ = run_keyframe_generation( | |
storyboard, fixed_reference_paths, keyframe_resolution, global_prompt, progress | |
) | |
log_message("\n--- INICIANDO ETAPA 3: PRODUÇÃO DE VÍDEO ---") | |
total_frames = video_duration_seconds * video_fps | |
fragment_duration_in_frames = int(math.floor((fragment_duration_percentage / 100.0) * total_frames)) | |
fragment_duration_in_frames = max(1, fragment_duration_in_frames) | |
final_gallery, final_state, frag_dur, eco_f = run_video_production( | |
video_resolution, video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing, | |
fragment_duration_in_frames, mid_cond_strength, dest_cond_strength, num_inference_steps, | |
decode_timestep, image_cond_noise_scale, | |
global_prompt, keyframe_paths, storyboard, cfg, progress | |
) | |
return keyframe_paths, keyframe_paths, final_gallery, final_state, frag_dur, eco_f | |
director_button.click( | |
fn=process_and_run_storyboard, | |
inputs=[num_fragments_input, prompt_input, reference_gallery, keyframe_resolution_selector], | |
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_paths_state] | |
).success(fn=lambda s: s, inputs=[scene_storyboard_state], outputs=[storyboard_to_show]) | |
photographer_button.click( | |
fn=run_keyframes_and_video, | |
inputs=[ | |
scene_storyboard_state, processed_ref_paths_state, keyframe_resolution_selector, prompt_geral_state, | |
video_resolution_selector, video_duration_slider, video_fps_radio, eco_frames_slider, slicing_checkbox, | |
fragment_duration_slider, mid_cond_strength_slider, dest_cond_strength_slider, num_inference_steps_slider, | |
decode_timestep_slider, image_cond_noise_scale_slider, cfg_slider | |
], | |
outputs=[ | |
keyframe_gallery_output, | |
keyframe_images_state, | |
video_gallery_output, | |
fragment_list_state, | |
fragment_duration_state, | |
eco_frames_state | |
] | |
) | |
editor_button.click( | |
fn=concatenate_final_video, | |
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state], | |
outputs=[final_video_output] | |
) | |
if __name__ == "__main__": | |
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR) | |
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True) | |
demo.queue().launch(server_name="0.0.0.0", share=True) |