|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gradio as gr |
|
import torch |
|
import os |
|
import yaml |
|
from PIL import Image, ImageOps, ExifTags |
|
import shutil |
|
import gc |
|
import subprocess |
|
import google.generativeai as genai |
|
import numpy as np |
|
import imageio |
|
from pathlib import Path |
|
import huggingface_hub |
|
import json |
|
import time |
|
|
|
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding |
|
from dreamo_helpers import dreamo_generator_singleton |
|
|
|
|
|
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml" |
|
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file) |
|
|
|
LTX_REPO = "Lightricks/LTX-Video" |
|
models_dir = "downloaded_models_gradio" |
|
Path(models_dir).mkdir(parents=True, exist_ok=True) |
|
WORKSPACE_DIR = "aduc_workspace" |
|
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY") |
|
|
|
VIDEO_FPS = 24 |
|
TARGET_RESOLUTION = 420 |
|
|
|
print("Criando pipelines LTX na CPU (estado de repouso)...") |
|
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False) |
|
pipeline_instance = create_ltx_video_pipeline( |
|
ckpt_path=distilled_model_actual_path, |
|
precision=PIPELINE_CONFIG_YAML["precision"], |
|
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"], |
|
sampler=PIPELINE_CONFIG_YAML["sampler"], |
|
device='cpu' |
|
) |
|
print("Modelos LTX prontos (na CPU).") |
|
|
|
|
|
|
|
|
|
def robust_json_parser(raw_text: str) -> dict: |
|
try: |
|
start_index = raw_text.find('{'); end_index = raw_text.rfind('}') |
|
if start_index != -1 and end_index != -1 and end_index > start_index: |
|
json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str) |
|
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.") |
|
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}") |
|
|
|
def extract_image_exif(image_path: str) -> str: |
|
try: |
|
img = Image.open(image_path); exif_data = img._getexif() |
|
if not exif_data: return "No EXIF metadata found." |
|
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS } |
|
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength'] |
|
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif) |
|
return metadata_str if metadata_str else "No relevant EXIF metadata found." |
|
except Exception: return "Could not read EXIF data." |
|
|
|
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str): |
|
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.") |
|
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") |
|
exif_metadata = extract_image_exif(initial_image_path) |
|
prompt_file = "prompts/unified_storyboard_prompt.txt" |
|
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() |
|
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata) |
|
genai.configure(api_key=GEMINI_API_KEY) |
|
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path) |
|
print("Gerando roteiro com análise de visão integrada...") |
|
response = model.generate_content([director_prompt, img]) |
|
try: |
|
storyboard_data = robust_json_parser(response.text) |
|
storyboard = storyboard_data.get("scene_storyboard", []) |
|
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}") |
|
return storyboard |
|
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}") |
|
|
|
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str: |
|
genai.configure(api_key=GEMINI_API_KEY) |
|
prompt_file = "prompts/img2img_evolution_prompt.txt" |
|
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() |
|
director_prompt = template.format(target_scene_description=target_scene_description) |
|
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path) |
|
response = model.generate_content([director_prompt, "Previous Image:", img]) |
|
return response.text.strip().replace("\"", "") |
|
|
|
def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()): |
|
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.") |
|
initial_ref_image_path = ref_images_tasks[0]['image'] |
|
if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.") |
|
log_history = ""; generated_images_for_gallery = [] |
|
try: |
|
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache() |
|
dreamo_generator_singleton.to_gpu() |
|
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32 |
|
keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path |
|
for i, scene_description in enumerate(storyboard): |
|
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}") |
|
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n" |
|
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description) |
|
reference_items = [] |
|
fixed_references_basenames = [os.path.basename(item['image']) for item in ref_images_tasks if item['image']] |
|
for item in ref_images_tasks: |
|
if item['image']: |
|
reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']}) |
|
dynamic_references_paths = keyframe_paths[-3:] |
|
for ref_path in dynamic_references_paths: |
|
if os.path.basename(ref_path) not in fixed_references_basenames: |
|
reference_items.append({'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': 'ip'}) |
|
log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n" |
|
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)} |
|
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png") |
|
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height) |
|
image.save(output_path) |
|
keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path |
|
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)} |
|
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}") |
|
finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache() |
|
log_history += "\nPintura de todos os keyframes concluída.\n" |
|
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths} |
|
|
|
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str): |
|
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") |
|
try: |
|
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt" |
|
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() |
|
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc) |
|
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path) |
|
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt] |
|
response = model.generate_content(model_contents) |
|
return response.text.strip() |
|
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}") |
|
|
|
def get_dynamic_motion_prompt(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc): |
|
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!") |
|
try: |
|
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/dynamic_motion_prompt.txt" |
|
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read() |
|
cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc) |
|
|
|
with imageio.get_reader(memory_media_path) as reader: |
|
mem_img = Image.fromarray(reader.get_data(0)) |
|
|
|
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path) |
|
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt] |
|
response = model.generate_content(model_contents) |
|
return response.text.strip() |
|
except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}") |
|
|
|
def run_video_production( |
|
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing, |
|
fragment_duration_frames, mid_cond_strength, num_inference_steps, |
|
prompt_geral, keyframe_images_state, scene_storyboard, cfg, |
|
progress=gr.Progress() |
|
): |
|
video_total_frames = int(video_duration_seconds * video_fps) |
|
if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.") |
|
if int(fragment_duration_frames) > video_total_frames: |
|
raise gr.Error(f"A 'Duração de Cada Fragmento' ({fragment_duration_frames} frames) não pode ser maior que a 'Duração da Geração Bruta' ({video_total_frames} frames).") |
|
|
|
log_history = "\n--- FASE 3/4: Iniciando Produção (Eco + Déjà Vu)...\n" |
|
yield { |
|
production_log_output: log_history, |
|
video_gallery_glitch: [], |
|
prod_media_start_output: gr.update(value=None), |
|
prod_media_mid_output: gr.update(value=None, visible=False), |
|
prod_media_end_output: gr.update(value=None), |
|
} |
|
|
|
seed = int(time.time()) |
|
target_device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
try: |
|
pipeline_instance.to(target_device) |
|
video_fragments, story_history = [], ""; kinetic_memory_path = None |
|
with Image.open(keyframe_images_state[1]) as img: width, height = img.size |
|
|
|
num_transitions = len(keyframe_images_state) - 2 |
|
for i in range(num_transitions): |
|
fragment_num = i + 1 |
|
progress(i / num_transitions, desc=f"Preparando Fragmento {fragment_num}...") |
|
log_history += f"\n--- FRAGMENTO {fragment_num}/{num_transitions} ---\n" |
|
|
|
if i == 0: |
|
start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2] |
|
dest_scene_desc = scene_storyboard[1] |
|
log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n" |
|
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc) |
|
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, int(video_total_frames), 1.0)] |
|
|
|
yield { |
|
production_log_output: gr.update(value=log_history), |
|
prod_media_start_output: gr.update(value=start_path), |
|
prod_media_mid_output: gr.update(value=None, visible=False), |
|
prod_media_end_output: gr.update(value=destination_path), |
|
} |
|
else: |
|
memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2] |
|
path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1] |
|
log_history += f" - Memória Cinética (Vídeo): {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n" |
|
|
|
mid_cond_frame_calculated = int(video_total_frames - fragment_duration_frames + eco_video_frames) |
|
log_history += f" - Frame de Condicionamento do 'Caminho' calculado: {mid_cond_frame_calculated}\n" |
|
|
|
current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc) |
|
conditioning_items_data = [(memory_path, 0, 1.0), (path_path, mid_cond_frame_calculated, mid_cond_strength), (destination_path, int(video_total_frames), 1.0)] |
|
|
|
yield { |
|
production_log_output: gr.update(value=log_history), |
|
prod_media_start_output: gr.update(value=memory_path), |
|
prod_media_mid_output: gr.update(value=path_path, visible=True), |
|
prod_media_end_output: gr.update(value=destination_path), |
|
} |
|
|
|
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}" |
|
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history} |
|
|
|
progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}...") |
|
full_fragment_path, actual_frames_generated = run_ltx_animation( |
|
current_fragment_index=fragment_num, motion_prompt=current_motion_prompt, |
|
conditioning_items_data=conditioning_items_data, width=width, height=height, |
|
seed=seed, cfg=cfg, progress=progress, |
|
video_total_frames=video_total_frames, video_fps=video_fps, |
|
use_attention_slicing=use_attention_slicing, num_inference_steps=num_inference_steps |
|
) |
|
|
|
log_history += f" - LOG: Gerei o fragmento_{fragment_num} bruto com {actual_frames_generated} frames.\n" |
|
yield {production_log_output: log_history} |
|
|
|
trimmed_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4") |
|
trim_video_to_frames(full_fragment_path, trimmed_fragment_path, int(fragment_duration_frames)) |
|
|
|
log_history += f" - LOG: Reduzi o fragmento_{fragment_num} para {int(fragment_duration_frames)} frames.\n" |
|
yield {production_log_output: log_history} |
|
|
|
is_last_fragment = (i == num_transitions - 1) |
|
if not is_last_fragment: |
|
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4") |
|
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames)) |
|
log_history += f" - LOG: Gerei o eco com {int(eco_video_frames)} frames a partir do final do fragmento reduzido.\n" |
|
log_history += f" - Novo Eco Cinético (Vídeo) criado: {os.path.basename(kinetic_memory_path)}\n" |
|
else: |
|
log_history += f" - Este é o último fragmento, não é necessário gerar um eco.\n" |
|
|
|
video_fragments.append(trimmed_fragment_path) |
|
yield {production_log_output: log_history, video_gallery_glitch: video_fragments} |
|
|
|
progress(1.0, desc="Produção Concluída.") |
|
log_history += "\nProdução de todos os fragmentos concluída.\n" |
|
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments} |
|
finally: |
|
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache() |
|
|
|
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str: |
|
if not image_path: return None |
|
try: |
|
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS) |
|
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path) |
|
return output_path |
|
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}") |
|
|
|
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor: |
|
if media_path.lower().endswith(('.mp4', '.mov', '.avi')): |
|
with imageio.get_reader(media_path) as reader: |
|
first_frame_np = reader.get_data(0) |
|
temp_img_path = os.path.join(WORKSPACE_DIR, f"temp_frame_from_{os.path.basename(media_path)}.png") |
|
Image.fromarray(first_frame_np).save(temp_img_path) |
|
return load_image_to_tensor_with_resize_and_crop(temp_img_path, height, width) |
|
else: |
|
return load_image_to_tensor_with_resize_and_crop(media_path, height, width) |
|
|
|
def run_ltx_animation( |
|
current_fragment_index, motion_prompt, conditioning_items_data, |
|
width, height, seed, cfg, progress, |
|
video_total_frames, video_fps, use_attention_slicing, num_inference_steps |
|
): |
|
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}..."); |
|
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu' |
|
try: |
|
pipeline_instance.to(target_device) |
|
if use_attention_slicing: pipeline_instance.enable_attention_slicing() |
|
|
|
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data] |
|
|
|
actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1) |
|
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32 |
|
padding_vals = calculate_padding(height, width, padded_h, padded_w) |
|
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals) |
|
|
|
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy() |
|
first_pass_config['num_inference_steps'] = int(num_inference_steps) |
|
|
|
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)} |
|
|
|
result_tensor = pipeline_instance(**kwargs).images |
|
|
|
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None |
|
|
|
cropped_tensor = result_tensor[:, :, :actual_num_frames, pad_t:slice_h, pad_l:slice_w] |
|
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8) |
|
|
|
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer: |
|
for i, frame in enumerate(video_np): writer.append_data(frame) |
|
return output_path, actual_num_frames |
|
finally: |
|
if use_attention_slicing: pipeline_instance.disable_attention_slicing() |
|
pipeline_instance.to('cpu') |
|
|
|
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str: |
|
try: |
|
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True) |
|
return output_path |
|
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}") |
|
|
|
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str: |
|
try: |
|
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\"" |
|
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True) |
|
total_frames = int(result.stdout.strip()) |
|
|
|
if n_frames >= total_frames: |
|
shutil.copyfile(input_path, output_path) |
|
return output_path |
|
|
|
start_frame = total_frames - n_frames |
|
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\"" |
|
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True) |
|
return output_path |
|
except (subprocess.CalledProcessError, ValueError) as e: |
|
raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}") |
|
|
|
def concatenate_and_trim_masterpiece(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()): |
|
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.") |
|
progress(0.1, desc="Preparando fragmentos para montagem final..."); |
|
|
|
try: |
|
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt") |
|
final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4") |
|
temp_files_for_concat = [] |
|
|
|
final_clip_len = int(fragment_duration_frames - eco_video_frames) |
|
|
|
for i, p in enumerate(fragment_paths): |
|
if i == len(fragment_paths) - 1: |
|
temp_files_for_concat.append(os.path.abspath(p)) |
|
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Mantendo último fragmento: {os.path.basename(p)}") |
|
else: |
|
temp_path = os.path.join(WORKSPACE_DIR, f"temp_concat_{i}.mp4") |
|
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Cortando {os.path.basename(p)} para {final_clip_len} frames") |
|
trim_video_to_frames(p, temp_path, final_clip_len) |
|
temp_files_for_concat.append(temp_path) |
|
|
|
progress(0.9, desc="Concatenando clipes...") |
|
with open(list_file_path, "w") as f: |
|
for p_temp in temp_files_for_concat: |
|
f.write(f"file '{p_temp}'\n") |
|
|
|
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True) |
|
progress(1.0, desc="Montagem concluída!") |
|
return final_output_path |
|
except subprocess.CalledProcessError as e: |
|
raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}") |
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft()) as demo: |
|
gr.Markdown("# NOVIM-6.0 (Painel de Controle do Diretor)\n*By Carlex & Gemini & DreamO*") |
|
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR) |
|
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True) |
|
|
|
scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([]) |
|
prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("") |
|
|
|
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)") |
|
num_fragments_input = gr.Slider(2, 5, 4, step=1, label="Número de Atos (Keyframes)") |
|
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})") |
|
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary") |
|
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)") |
|
|
|
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)") |
|
with gr.Row(): |
|
with gr.Column(scale=2): |
|
gr.Markdown("Forneça referências para guiar a IA. A Principal é obrigatória. A Secundária é opcional (ex: para estilo ou uma segunda pessoa).") |
|
with gr.Row(): |
|
with gr.Column(): |
|
ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath") |
|
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal") |
|
with gr.Column(): |
|
ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath") |
|
ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária") |
|
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary") |
|
with gr.Column(scale=1): |
|
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False) |
|
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath") |
|
|
|
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)") |
|
with gr.Row(): |
|
with gr.Column(scale=1): |
|
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG") |
|
with gr.Accordion("Controles Avançados de Timing e Performance", open=False): |
|
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (segundos)", minimum=2.0, maximum=10.0, value=6.0, step=0.5) |
|
video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=30, value=30, step=1) |
|
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência", minimum=10, maximum=50, value=30, step=1) |
|
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True) |
|
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Arquitetura Eco + Déjà Vu)") |
|
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (Frames)", minimum=30, maximum=300, value=90, step=1) |
|
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1) |
|
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05) |
|
gr.Markdown( |
|
""" |
|
**Instruções (Nova Arquitetura):** |
|
- **Duração da Geração Bruta:** Tempo total que a IA tem para criar a transição. Deve ser MAIOR que a Duração do Fragmento. |
|
- **Duração de Cada Fragmento:** O comprimento final de cada clipe de vídeo que será gerado. |
|
- **Tamanho do Eco Cinético:** Quantos frames do *final* de um fragmento serão passados para o próximo para garantir continuidade. |
|
- **Força do Caminho:** Define o quão forte a imagem-chave intermediária ('Caminho') influencia a transição. |
|
""" |
|
) |
|
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary") |
|
with gr.Accordion("Visualização das Mídias de Condicionamento (Ao Vivo)", open=True): |
|
with gr.Row(): |
|
prod_media_start_output = gr.Video(label="Mídia Inicial (Eco/K1)", interactive=False) |
|
prod_media_mid_output = gr.Image(label="Mídia do Caminho (K_i-1)", interactive=False, visible=False) |
|
prod_media_end_output = gr.Image(label="Mídia de Destino (K_i)", interactive=False) |
|
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False) |
|
with gr.Column(scale=1): video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados (Versões Cortadas)", object_fit="contain", height="auto", type="video") |
|
|
|
fragment_duration_state = gr.State() |
|
eco_frames_state = gr.State() |
|
|
|
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)") |
|
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary") |
|
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION) |
|
|
|
gr.Markdown( |
|
""" |
|
--- |
|
### A Arquitetura: Eco + Déjà Vu |
|
A geração começa com um "Big Bang" entre os dois primeiros keyframes. A partir daí, a mágica acontece. |
|
* **O Eco (A Memória Física):** No final de cada cena, os últimos frames são capturados e salvos como um pequeno vídeo, o `Eco`. Ele carrega a "energia cinética" do movimento, iluminação e atmosfera da cena que acabou. |
|
* **O Déjà Vu (A Memória Conceitual):** Para criar a próxima cena, o Cineasta de IA (Gemini) assiste ao `Eco`, olha para o keyframe do "caminho" e o keyframe do "destino". Com essa visão tripla, ele tem um "déjà vu", uma memória do que acabou de acontecer que o inspira a escrever uma instrução de câmera precisa para conectar o passado ao futuro de forma fluida e coerente. |
|
""" |
|
) |
|
|
|
|
|
def process_and_update_storyboard(num_fragments, prompt, image_path): |
|
processed_path = process_image_to_square(image_path) |
|
if not processed_path: raise gr.Error("A imagem de referência é inválida ou não foi fornecida.") |
|
storyboard = run_storyboard_generation(num_fragments, prompt, processed_path) |
|
return storyboard, prompt, processed_path |
|
|
|
director_button.click( |
|
fn=process_and_update_storyboard, |
|
inputs=[num_fragments_input, prompt_input, image_input], |
|
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state] |
|
).success( |
|
fn=lambda s, p: (s, p), |
|
inputs=[scene_storyboard_state, processed_ref_path_state], |
|
outputs=[storyboard_to_show, ref1_image] |
|
) |
|
|
|
@photographer_button.click( |
|
inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task], |
|
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state] |
|
) |
|
def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()): |
|
ref_data = [ |
|
{'image': ref1_img, 'task': ref1_tsk}, |
|
{'image': ref2_img, 'task': ref2_tsk} |
|
] |
|
yield from run_keyframe_generation(storyboard, ref_data, progress) |
|
|
|
animator_button.click( |
|
fn=lambda frag_dur, eco_dur: (frag_dur, eco_dur), |
|
inputs=[fragment_duration_slider, eco_frames_slider], |
|
outputs=[fragment_duration_state, eco_frames_state] |
|
).then( |
|
fn=run_video_production, |
|
inputs=[ |
|
video_duration_slider, video_fps_slider, eco_frames_slider, slicing_checkbox, |
|
fragment_duration_slider, mid_cond_strength_slider, |
|
num_inference_steps_slider, |
|
prompt_geral_state, keyframe_images_state, scene_storyboard_state, cfg_slider |
|
], |
|
outputs=[ |
|
production_log_output, video_gallery_glitch, fragment_list_state, |
|
prod_media_start_output, prod_media_mid_output, prod_media_end_output |
|
] |
|
) |
|
|
|
editor_button.click( |
|
fn=concatenate_and_trim_masterpiece, |
|
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state], |
|
outputs=[final_video_output] |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.queue().launch(server_name="0.0.0.0", share=True) |