Upload 2 files
Browse files- app (51).py +559 -0
- dreamo_helpers (3).py +123 -0
app (51).py
ADDED
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
|
2 |
+
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
3 |
+
#
|
4 |
+
# Contato:
|
5 |
+
# Carlos Rodrigues dos Santos
|
6 | |
7 |
+
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
8 |
+
#
|
9 |
+
# Repositórios e Projetos Relacionados:
|
10 |
+
# GitHub: https://github.com/carlex22/Aduc-sdr
|
11 |
+
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
|
12 |
+
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
|
13 |
+
#
|
14 |
+
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
|
15 |
+
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
|
16 |
+
# Free Software Foundation, seja a versão 3 da Licença, ou
|
17 |
+
# (a seu critério) qualquer versão posterior.
|
18 |
+
#
|
19 |
+
# Este programa é distribuído na esperança de que seja útil,
|
20 |
+
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
|
21 |
+
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
|
22 |
+
# Licença Pública Geral Affero da GNU para mais detalhes.
|
23 |
+
#
|
24 |
+
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
|
25 |
+
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
|
26 |
+
|
27 |
+
# --- app.py (NOVINHO-4.4: O Piloto de Testes - Vetor de Frames) ---
|
28 |
+
|
29 |
+
# --- Ato 1: A Convocação da Orquestra (Importações) ---
|
30 |
+
import gradio as gr
|
31 |
+
import torch
|
32 |
+
import os
|
33 |
+
import yaml
|
34 |
+
from PIL import Image, ImageOps
|
35 |
+
import shutil
|
36 |
+
import gc
|
37 |
+
import subprocess
|
38 |
+
import google.generativeai as genai
|
39 |
+
import numpy as np
|
40 |
+
import imageio
|
41 |
+
from pathlib import Path
|
42 |
+
import huggingface_hub
|
43 |
+
import json
|
44 |
+
import time
|
45 |
+
from typing import Union, List
|
46 |
+
|
47 |
+
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
|
48 |
+
from dreamo_helpers import dreamo_generator_singleton
|
49 |
+
|
50 |
+
# --- Ato 2: A Preparação do Palco (Configurações) ---
|
51 |
+
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
52 |
+
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
53 |
+
|
54 |
+
LTX_REPO = "Lightricks/LTX-Video"
|
55 |
+
models_dir = "downloaded_models_gradio_cpu_init"
|
56 |
+
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
57 |
+
WORKSPACE_DIR = "aduc_workspace"
|
58 |
+
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
59 |
+
|
60 |
+
VIDEO_FPS = 36
|
61 |
+
VIDEO_DURATION_SECONDS = 4
|
62 |
+
VIDEO_TOTAL_FRAMES = VIDEO_DURATION_SECONDS * VIDEO_FPS
|
63 |
+
CONVERGENCE_FRAMES = 8
|
64 |
+
TARGET_RESOLUTION = 720
|
65 |
+
MAX_REFS = 4
|
66 |
+
|
67 |
+
print("Baixando e criando pipelines LTX na CPU...")
|
68 |
+
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
69 |
+
pipeline_instance = create_ltx_video_pipeline(
|
70 |
+
ckpt_path=distilled_model_actual_path,
|
71 |
+
precision=PIPELINE_CONFIG_YAML["precision"],
|
72 |
+
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
73 |
+
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
74 |
+
device='cpu'
|
75 |
+
)
|
76 |
+
print("Modelos LTX prontos (na CPU).")
|
77 |
+
|
78 |
+
|
79 |
+
# --- Ato 3: As Partituras dos Músicos (Funções Corrigidas e Documentadas) ---
|
80 |
+
|
81 |
+
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
|
82 |
+
if not media_path: raise ValueError("Caminho da mídia de condicionamento não pode ser nulo.")
|
83 |
+
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
84 |
+
|
85 |
+
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg, progress=gr.Progress()):
|
86 |
+
progress(0, desc=f"[TECPIX 5000] Filmando Cena {current_fragment_index}...");
|
87 |
+
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
88 |
+
try:
|
89 |
+
pipeline_instance.to(target_device)
|
90 |
+
conditioning_items = []
|
91 |
+
for (path, start_frame, strength) in conditioning_items_data:
|
92 |
+
tensor = load_conditioning_tensor(path, height, width)
|
93 |
+
conditioning_items.append(ConditioningItem(tensor.to(target_device), start_frame, strength))
|
94 |
+
|
95 |
+
n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0); actual_num_frames = int(n_val * 8 + 1)
|
96 |
+
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
97 |
+
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
98 |
+
for cond_item in conditioning_items: cond_item.media_item = torch.nn.functional.pad(cond_item.media_item, padding_vals)
|
99 |
+
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": VIDEO_FPS, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "offload_to_cpu": False, "enhance_prompt": False}
|
100 |
+
result_tensor = pipeline_instance(**kwargs).images
|
101 |
+
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
|
102 |
+
cropped_tensor = result_tensor[:, :, :VIDEO_TOTAL_FRAMES, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
103 |
+
with imageio.get_writer(output_path, fps=VIDEO_FPS, codec='libx264', quality=8) as writer:
|
104 |
+
for i, frame in enumerate(video_np): progress(i / len(video_np), desc=f"Renderizando frame {i+1}/{len(video_np)}..."); writer.append_data(frame)
|
105 |
+
return output_path
|
106 |
+
finally:
|
107 |
+
pipeline_instance.to('cpu'); gc.collect()
|
108 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
109 |
+
|
110 |
+
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
|
111 |
+
if not image_path or not os.path.exists(image_path): return None
|
112 |
+
try:
|
113 |
+
img = Image.open(image_path).convert("RGB")
|
114 |
+
img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
|
115 |
+
output_filename = f"initial_ref_{size}x{size}.png"
|
116 |
+
output_path = os.path.join(WORKSPACE_DIR, output_filename)
|
117 |
+
img_square.save(output_path)
|
118 |
+
return output_path
|
119 |
+
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
|
120 |
+
|
121 |
+
def get_static_scenes_storyboard(num_fragments: int, prompt: str, initial_image_path: str):
|
122 |
+
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
123 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
124 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
125 |
+
prompt_file = "prompts/photographer_prompt.txt"
|
126 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
127 |
+
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments))
|
128 |
+
model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(initial_image_path)
|
129 |
+
response = model.generate_content([director_prompt, img])
|
130 |
+
try:
|
131 |
+
cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
|
132 |
+
storyboard_data = json.loads(cleaned_response)
|
133 |
+
return storyboard_data.get("scene_storyboard", [])
|
134 |
+
except Exception as e: raise gr.Error(f"O Sonhador (Gemini) falhou ao criar o roteiro: {e}. Resposta: {response.text}")
|
135 |
+
|
136 |
+
def run_keyframe_generation(storyboard, initial_ref_image_path, *reference_args):
|
137 |
+
# ... (código inalterado) ...
|
138 |
+
if not storyboard:
|
139 |
+
raise gr.Error("Nenhum roteiro para gerar imagens-chave.")
|
140 |
+
if not initial_ref_image_path or not os.path.exists(initial_ref_image_path):
|
141 |
+
raise gr.Error("A imagem de referência principal é obrigatória para iniciar a pintura.")
|
142 |
+
|
143 |
+
num_total_refs = MAX_REFS + 1
|
144 |
+
ref_paths = list(reference_args[:num_total_refs])
|
145 |
+
ref_tasks = list(reference_args[num_total_refs:])
|
146 |
+
|
147 |
+
with Image.open(initial_ref_image_path) as img:
|
148 |
+
width, height = img.size
|
149 |
+
width, height = (width // 32) * 32, (height // 32) * 32
|
150 |
+
|
151 |
+
keyframe_paths = []
|
152 |
+
log_history = ""
|
153 |
+
|
154 |
+
try:
|
155 |
+
dreamo_generator_singleton.to_gpu()
|
156 |
+
|
157 |
+
log_history += f"Pintando Keyframe Inicial (Cena 1/{len(storyboard)})...\n"
|
158 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths)}
|
159 |
+
|
160 |
+
references_for_first_frame = []
|
161 |
+
references_for_first_frame.append({'image_np': np.array(Image.open(initial_ref_image_path).convert("RGB")), 'task': 'ip'})
|
162 |
+
log_history += f" - Usando imagem de referência principal '{os.path.basename(initial_ref_image_path)}' (Tarefa: ip)\n"
|
163 |
+
|
164 |
+
for j in range(1, num_total_refs):
|
165 |
+
aux_path, aux_task = ref_paths[j], ref_tasks[j]
|
166 |
+
if aux_path and os.path.exists(aux_path):
|
167 |
+
references_for_first_frame.append({'image_np': np.array(Image.open(aux_path).convert("RGB")), 'task': aux_task})
|
168 |
+
log_history += f" - Usando ref. auxiliar: {os.path.basename(aux_path)} (Tarefa: {aux_task})\n"
|
169 |
+
|
170 |
+
first_prompt = storyboard[0]
|
171 |
+
output_path = os.path.join(WORKSPACE_DIR, "keyframe_1.png")
|
172 |
+
image = dreamo_generator_singleton.generate_image_with_gpu_management(
|
173 |
+
reference_items=references_for_first_frame, prompt=first_prompt, width=width, height=height
|
174 |
+
)
|
175 |
+
image.save(output_path)
|
176 |
+
keyframe_paths.append(output_path)
|
177 |
+
current_ref_image_path = output_path
|
178 |
+
|
179 |
+
for i, prompt in enumerate(storyboard[1:], start=1):
|
180 |
+
log_history += f"\nPintando Cena Sequencial {i+1}/{len(storyboard)}...\n"
|
181 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths)}
|
182 |
+
|
183 |
+
reference_items_for_dreamo = []
|
184 |
+
sequential_ref_task = ref_tasks[0]
|
185 |
+
reference_items_for_dreamo.append({'image_np': np.array(Image.open(current_ref_image_path).convert("RGB")), 'task': sequential_ref_task})
|
186 |
+
log_history += f" - Usando ref. sequencial: {os.path.basename(current_ref_image_path)} (Tarefa: {sequential_ref_task})\n"
|
187 |
+
|
188 |
+
for j in range(1, num_total_refs):
|
189 |
+
aux_path, aux_task = ref_paths[j], ref_tasks[j]
|
190 |
+
if aux_path and os.path.exists(aux_path):
|
191 |
+
reference_items_for_dreamo.append({'image_np': np.array(Image.open(aux_path).convert("RGB")), 'task': aux_task})
|
192 |
+
log_history += f" - Usando ref. auxiliar: {os.path.basename(aux_path)} (Tarefa: {aux_task})\n"
|
193 |
+
|
194 |
+
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
|
195 |
+
image = dreamo_generator_singleton.generate_image_with_gpu_management(
|
196 |
+
reference_items=reference_items_for_dreamo, prompt=prompt, width=width, height=height
|
197 |
+
)
|
198 |
+
image.save(output_path)
|
199 |
+
keyframe_paths.append(output_path)
|
200 |
+
current_ref_image_path = output_path
|
201 |
+
|
202 |
+
except Exception as e:
|
203 |
+
raise gr.Error(f"O Pintor (DreamO) encontrou um erro: {e}")
|
204 |
+
finally:
|
205 |
+
dreamo_generator_singleton.to_cpu()
|
206 |
+
|
207 |
+
log_history += "\nPintura de todos os keyframes concluída.\n"
|
208 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths), keyframe_images_state: keyframe_paths}
|
209 |
+
|
210 |
+
####
|
211 |
+
# Gera um prompt de movimento para uma transição.
|
212 |
+
# Agora é flexível: aceita uma única imagem de partida ou uma lista de frames de contexto.
|
213 |
+
####
|
214 |
+
def get_single_motion_prompt(user_prompt: str, story_history: str, start_media_paths: Union[str, List[str]], end_keyframe_path: str, prompt_filename: str):
|
215 |
+
if not GEMINI_API_KEY:
|
216 |
+
raise gr.Error("Chave da API Gemini não configurada!")
|
217 |
+
|
218 |
+
if isinstance(start_media_paths, str):
|
219 |
+
start_media_paths = [start_media_paths]
|
220 |
+
|
221 |
+
uploaded_files = []
|
222 |
+
try:
|
223 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
224 |
+
model = genai.GenerativeModel('gemini-2.0-flash')
|
225 |
+
|
226 |
+
for path in start_media_paths:
|
227 |
+
print(f"Cineasta: Fazendo upload do arquivo de contexto '{path}'...")
|
228 |
+
file_to_upload = genai.upload_file(path)
|
229 |
+
|
230 |
+
print(f"Cineasta: Aguardando arquivo '{file_to_upload.name}' ficar ATIVO...")
|
231 |
+
timeout_seconds = 180
|
232 |
+
start_time = time.time()
|
233 |
+
|
234 |
+
while file_to_upload.state.name == "PROCESSING":
|
235 |
+
if time.time() - start_time > timeout_seconds:
|
236 |
+
raise TimeoutError(f"Tempo de espera para '{file_to_upload.name}' excedido.")
|
237 |
+
time.sleep(2)
|
238 |
+
file_to_upload = genai.get_file(name=file_to_upload.name)
|
239 |
+
|
240 |
+
if file_to_upload.state.name != "ACTIVE":
|
241 |
+
raise gr.Error(f"O arquivo de mídia '{file_to_upload.name}' falhou no processamento. Estado: {file_to_upload.state.name}")
|
242 |
+
|
243 |
+
uploaded_files.append(file_to_upload)
|
244 |
+
|
245 |
+
print(f"Cineasta: Todos os {len(uploaded_files)} arquivos de contexto estão ATIVOS. Gerando prompt...")
|
246 |
+
end_media = Image.open(end_keyframe_path)
|
247 |
+
|
248 |
+
prompt_file_path = os.path.join(os.path.dirname(__file__), "prompts", prompt_filename)
|
249 |
+
with open(prompt_file_path, "r", encoding="utf-8") as f:
|
250 |
+
template = f.read()
|
251 |
+
|
252 |
+
director_prompt = template.format(user_prompt=user_prompt, story_history=story_history)
|
253 |
+
|
254 |
+
model_contents = [director_prompt] + uploaded_files + [end_media]
|
255 |
+
response = model.generate_content(model_contents)
|
256 |
+
|
257 |
+
cleaned_text = response.text.strip().replace("```json", "").replace("```", "")
|
258 |
+
motion_data = json.loads(cleaned_text)
|
259 |
+
return motion_data.get("motion_prompt", "")
|
260 |
+
|
261 |
+
except Exception as e:
|
262 |
+
response_text = getattr(e, 'text', 'Nenhuma resposta de texto disponível.')
|
263 |
+
raise gr.Error(f"O Cineasta (Gemini) falhou ao criar o prompt de movimento: {e}. Resposta: {response_text}")
|
264 |
+
|
265 |
+
finally:
|
266 |
+
for f in uploaded_files:
|
267 |
+
try:
|
268 |
+
genai.delete_file(f.name)
|
269 |
+
except Exception as delete_e:
|
270 |
+
print(f"Aviso: Falha ao deletar o arquivo temporário {f.name} da API Gemini. Erro: {delete_e}")
|
271 |
+
|
272 |
+
####
|
273 |
+
# NOVA FUNÇÃO: Extrai os 3 frames de contexto (vetor de movimento) de um vídeo.
|
274 |
+
####
|
275 |
+
def extract_context_frames(input_video_path: str, fragment_index: int) -> List[str]:
|
276 |
+
print(f"Editor: Extraindo vetor de frames do fragmento {fragment_index}...")
|
277 |
+
output_paths = []
|
278 |
+
try:
|
279 |
+
command_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=noprint_wrappers=1:nokey=1 \"{input_video_path}\""
|
280 |
+
result_probe = subprocess.run(command_probe, shell=True, check=True, capture_output=True, text=True)
|
281 |
+
total_frames = int(result_probe.stdout.strip())
|
282 |
+
|
283 |
+
if total_frames <= CONVERGENCE_FRAMES:
|
284 |
+
# Se o vídeo for muito curto, apenas retorna o último frame 3 vezes.
|
285 |
+
frame_indices = [total_frames - 1] * 3
|
286 |
+
else:
|
287 |
+
# Frame final, frame a 8 frames de distância, frame a 16 frames de distância
|
288 |
+
frame_indices = [total_frames - 1 - CONVERGENCE_FRAMES, total_frames - 1 - (CONVERGENCE_FRAMES // 2), total_frames - 1]
|
289 |
+
|
290 |
+
for i, frame_idx in enumerate(frame_indices):
|
291 |
+
output_path = os.path.join(WORKSPACE_DIR, f"context_{fragment_index}_frame_{i+1}.png")
|
292 |
+
command_extract = f"ffmpeg -y -v error -i \"{input_video_path}\" -vf \"select='eq(n,{frame_idx})'\" -frames:v 1 \"{output_path}\""
|
293 |
+
subprocess.run(command_extract, shell=True, check=True)
|
294 |
+
output_paths.append(output_path)
|
295 |
+
|
296 |
+
print(f"Editor: Vetor de frames extraído para: {output_paths}")
|
297 |
+
return output_paths
|
298 |
+
except Exception as e:
|
299 |
+
error_message = f"Editor Mágico (FFmpeg) falhou ao extrair os frames de contexto: {e}"
|
300 |
+
if hasattr(e, 'stderr'): error_message += f"\nDetalhes: {e.stderr}"
|
301 |
+
raise gr.Error(error_message)
|
302 |
+
|
303 |
+
####
|
304 |
+
# Orquestra a produção de todos os fragmentos de vídeo com a nova lógica de vetor de frames.
|
305 |
+
####
|
306 |
+
def run_video_production(prompt_geral, keyframe_image_paths, scene_storyboard, seed, cfg, progress=gr.Progress()):
|
307 |
+
if not keyframe_image_paths or len(keyframe_image_paths) < 2:
|
308 |
+
raise gr.Error("Pinte pelo menos 2 keyframes na Etapa 2 para produzir as transições.")
|
309 |
+
|
310 |
+
log_history = "\n--- FASE 3/4: A Câmera e o Cineasta estão filmando em sequência just-in-time...\n"
|
311 |
+
yield {production_log_output: log_history, video_gallery_glitch: []}
|
312 |
+
|
313 |
+
video_fragments = []
|
314 |
+
start_media_for_prompt = keyframe_image_paths[0]
|
315 |
+
previous_media_for_ltx = keyframe_image_paths[0]
|
316 |
+
|
317 |
+
story_history = ""
|
318 |
+
with Image.open(keyframe_image_paths[0]) as img:
|
319 |
+
width, height = img.size
|
320 |
+
|
321 |
+
num_transitions = len(keyframe_image_paths) - 1
|
322 |
+
for i in range(num_transitions):
|
323 |
+
end_keyframe_path = keyframe_image_paths[i+1]
|
324 |
+
is_first_fragment = (i == 0)
|
325 |
+
fragment_num = i + 1
|
326 |
+
|
327 |
+
progress(i / num_transitions, desc=f"Planejando Fragmento {fragment_num}/{num_transitions}")
|
328 |
+
|
329 |
+
log_history += f"\n--- FRAGMENTO {fragment_num} ---\n"
|
330 |
+
log_history += "Cineasta (Gemini) está analisando o contexto de movimento...\n"
|
331 |
+
yield {production_log_output: log_history}
|
332 |
+
|
333 |
+
if is_first_fragment:
|
334 |
+
prompt_filename_to_use = "director_motion_prompt.txt"
|
335 |
+
story_history = f"A história começa com a transição da cena '{scene_storyboard[0]}' para '{scene_storyboard[1]}'."
|
336 |
+
else:
|
337 |
+
prompt_filename_to_use = "director_motion_prompt_vector.txt"
|
338 |
+
story_history += f"\n- Em seguida, a cena muda de '{scene_storyboard[i]}' para '{scene_storyboard[i+1]}'."
|
339 |
+
|
340 |
+
current_motion_prompt = get_single_motion_prompt(prompt_geral, story_history, start_media_for_prompt, end_keyframe_path, prompt_filename_to_use)
|
341 |
+
|
342 |
+
log_history += f"Instrução do Cineasta ({prompt_filename_to_use}): '{current_motion_prompt}'\n"
|
343 |
+
log_history += f"Filmando transição de '{os.path.basename(previous_media_for_ltx)}' para '{os.path.basename(end_keyframe_path)}'...\n"
|
344 |
+
yield {production_log_output: log_history}
|
345 |
+
|
346 |
+
# LTX ainda usa apenas uma imagem de partida (o último frame do vídeo anterior)
|
347 |
+
end_frame_index = VIDEO_TOTAL_FRAMES - CONVERGENCE_FRAMES
|
348 |
+
conditioning_items_data = [(previous_media_for_ltx, 0, 1.0), (end_keyframe_path, end_frame_index, 1.0)]
|
349 |
+
|
350 |
+
fragment_path = run_ltx_animation(fragment_num, current_motion_prompt, conditioning_items_data, width, height, seed, cfg, progress)
|
351 |
+
video_fragments.append(fragment_path)
|
352 |
+
|
353 |
+
log_history += f"Fragmento {fragment_num} filmado. Preparando contexto para a próxima cena...\n"
|
354 |
+
yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
|
355 |
+
|
356 |
+
# Prepara as entradas para a PRÓXIMA iteração
|
357 |
+
context_frames = extract_context_frames(fragment_path, fragment_num)
|
358 |
+
start_media_for_prompt = context_frames # Gemini usará os 3 frames
|
359 |
+
previous_media_for_ltx = context_frames[-1] # LTX usará apenas o último frame
|
360 |
+
|
361 |
+
log_history += "\nFilmagem de todos os fragmentos de transição concluída.\n"
|
362 |
+
progress(1.0, desc="Produção Concluída.")
|
363 |
+
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
|
364 |
+
|
365 |
+
def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
|
366 |
+
# ... (código inalterado) ...
|
367 |
+
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
|
368 |
+
progress(0.2, desc="Aparando fragmentos para transições suaves...");
|
369 |
+
trimmed_dir = os.path.join(WORKSPACE_DIR, "trimmed"); os.makedirs(trimmed_dir, exist_ok=True)
|
370 |
+
paths_for_concat = []
|
371 |
+
try:
|
372 |
+
for i, path in enumerate(fragment_paths):
|
373 |
+
if i == len(fragment_paths) - 1:
|
374 |
+
paths_for_concat.append(path)
|
375 |
+
continue
|
376 |
+
|
377 |
+
trimmed_path = os.path.join(trimmed_dir, f"fragment_{i}_trimmed.mp4")
|
378 |
+
probe_cmd = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=noprint_wrappers=1:nokey=1 \"{path}\""
|
379 |
+
result = subprocess.run(probe_cmd, shell=True, check=True, capture_output=True, text=True)
|
380 |
+
total_frames = int(result.stdout.strip())
|
381 |
+
frames_to_keep = total_frames - CONVERGENCE_FRAMES
|
382 |
+
if frames_to_keep <= 0:
|
383 |
+
shutil.copyfile(path, trimmed_path)
|
384 |
+
paths_for_concat.append(trimmed_path)
|
385 |
+
continue
|
386 |
+
|
387 |
+
trim_cmd = f"ffmpeg -y -v error -i \"{path}\" -vf \"select='lt(n,{frames_to_keep})'\" -c:v libx264 -preset ultrafast -an \"{trimmed_path}\""
|
388 |
+
subprocess.run(trim_cmd, shell=True, check=True, capture_output=True, text=True)
|
389 |
+
paths_for_concat.append(trimmed_path)
|
390 |
+
|
391 |
+
progress(0.6, desc="Montando a obra-prima final...")
|
392 |
+
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "obra_prima_final.mp4")
|
393 |
+
with open(list_file_path, "w") as f:
|
394 |
+
for p in paths_for_concat: f.write(f"file '{os.path.abspath(p)}'\n")
|
395 |
+
concat_cmd = f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\""
|
396 |
+
subprocess.run(concat_cmd, shell=True, check=True, capture_output=True, text=True)
|
397 |
+
return final_output_path
|
398 |
+
except (subprocess.CalledProcessError, ValueError) as e:
|
399 |
+
error_message = f"FFmpeg falhou durante a pós-produção (corte e concatenação): {e}"
|
400 |
+
if hasattr(e, 'stderr'): error_message += f"\nDetalhes do erro do FFmpeg: {e.stderr}"
|
401 |
+
raise gr.Error(error_message)
|
402 |
+
|
403 |
+
|
404 |
+
# --- Ato 5: A Interface com o Mundo ---
|
405 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
406 |
+
gr.Markdown("# NOVINHO-4.4 (Piloto de Testes - Vetor de Frames)\n*By Carlex & Gemini & DreamO*")
|
407 |
+
|
408 |
+
# ... (Interface inalterada) ...
|
409 |
+
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
410 |
+
os.makedirs(WORKSPACE_DIR)
|
411 |
+
Path("examples").mkdir(exist_ok=True)
|
412 |
+
|
413 |
+
scene_storyboard_state = gr.State([])
|
414 |
+
keyframe_images_state = gr.State([])
|
415 |
+
fragment_list_state = gr.State([])
|
416 |
+
prompt_geral_state = gr.State("")
|
417 |
+
processed_ref_path_state = gr.State("")
|
418 |
+
visible_references_state = gr.State(0)
|
419 |
+
|
420 |
+
# --- ETAPA 1: O ROTEIRO ---
|
421 |
+
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (Sonhador)")
|
422 |
+
with gr.Row():
|
423 |
+
with gr.Column(scale=1):
|
424 |
+
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
425 |
+
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Cenas")
|
426 |
+
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
|
427 |
+
director_button = gr.Button("▶️ 1. Gerar Roteiro de Cenas", variant="primary")
|
428 |
+
with gr.Column(scale=2):
|
429 |
+
storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
|
430 |
+
|
431 |
+
# --- ETAPA 2: OS KEYFRAMES ---
|
432 |
+
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (Pintor)")
|
433 |
+
with gr.Row():
|
434 |
+
with gr.Column(scale=2):
|
435 |
+
gr.Markdown("### Controles do Pintor (DreamO)")
|
436 |
+
gr.Markdown("**Tarefas:** `style` (estilo), `ip` (conteúdo), `id` (identidade).")
|
437 |
+
ref_image_inputs, ref_task_inputs, aux_ref_rows = [], [], []
|
438 |
+
with gr.Group():
|
439 |
+
with gr.Row():
|
440 |
+
ref_image_inputs.append(gr.Image(label="Referência Sequencial (Automática)", type="filepath", interactive=False))
|
441 |
+
ref_task_inputs.append(gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa Seq."))
|
442 |
+
for i in range(MAX_REFS):
|
443 |
+
with gr.Row(visible=False) as ref_row_aux:
|
444 |
+
ref_image_inputs.append(gr.Image(label=f"Ref. Auxiliar {i+1}", type="filepath"))
|
445 |
+
ref_task_inputs.append(gr.Dropdown(choices=["ip", "id", "style"], value="ip", label=f"Tarefa Aux. {i+1}"))
|
446 |
+
aux_ref_rows.append(ref_row_aux)
|
447 |
+
with gr.Row():
|
448 |
+
add_ref_button = gr.Button("➕ Add Ref.")
|
449 |
+
remove_ref_button = gr.Button("➖ Rem. Ref.")
|
450 |
+
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave", variant="primary")
|
451 |
+
with gr.Column(scale=1):
|
452 |
+
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False)
|
453 |
+
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
|
454 |
+
|
455 |
+
# --- ETAPA 3: A PRODUÇÃO ---
|
456 |
+
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (Cineasta e Câmera)")
|
457 |
+
with gr.Row():
|
458 |
+
with gr.Column(scale=1):
|
459 |
+
with gr.Row():
|
460 |
+
seed_number = gr.Number(42, label="Seed")
|
461 |
+
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
|
462 |
+
animator_button = gr.Button("▶️ 3. Produzir Cenas em Vídeo", variant="primary")
|
463 |
+
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
|
464 |
+
with gr.Column(scale=1):
|
465 |
+
video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados (com sobreposição)", object_fit="contain", height="auto", type="video")
|
466 |
+
|
467 |
+
# --- ETAPA 4: PÓS-PRODUÇÃO ---
|
468 |
+
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
|
469 |
+
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
|
470 |
+
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
|
471 |
+
|
472 |
+
# --- Rodapé Filosófico ---
|
473 |
+
gr.Markdown(
|
474 |
+
"""
|
475 |
+
---
|
476 |
+
### A Arquitetura ADUC-SDR: O Esquema Matemático
|
477 |
+
A geração de vídeo é governada por uma função seccional que define como cada fragmento (`V_i`) é criado, operando em dois regimes distintos:
|
478 |
+
|
479 |
+
---
|
480 |
+
#### **FÓRMULA 1: O FRAGMENTO INICIAL (Gênesis, `i=1`)**
|
481 |
+
*Define a criação do primeiro clipe a partir de imagens estáticas.*
|
482 |
+
|
483 |
+
**Planejamento:** `P_1 = Γ_initial( K_1, K_2, P_geral )`
|
484 |
+
|
485 |
+
**Execução:** `V_1 = Ψ( { (K_1, F_start), (K_2, F_end) }, P_1 )`
|
486 |
+
|
487 |
+
---
|
488 |
+
#### **FÓRMULA 2: A CADEIA CAUSAL (Momentum, `i > 1`)**
|
489 |
+
*Define a criação dos fragmentos subsequentes, garantindo a continuidade através do "eco".*
|
490 |
+
|
491 |
+
**Destilação:** `C_(i-1) = Δ(V_(i-1))`
|
492 |
+
|
493 |
+
**Planejamento:** `P_i = Γ_transition( C_(i-1), K_(i+1), P_geral, H_(i-1) )`
|
494 |
+
|
495 |
+
**Execução:** `V_i = Ψ( { (C_(i-1), F_start), (K_(i+1), F_end) }, P_i )`
|
496 |
+
|
497 |
+
---
|
498 |
+
#### **Componentes (O Léxico da Arquitetura):**
|
499 |
+
- **`V_i`**: Fragmento de Vídeo
|
500 |
+
- **`K_i`**: Keyframe (Imagem Estática)
|
501 |
+
- **`C_i`**: "Eco" Causal (Clipe de Vídeo)
|
502 |
+
- **`P_i`**: Prompt de Movimento
|
503 |
+
- **`P_geral`**: Prompt Geral (Intenção do Diretor)
|
504 |
+
- **`H_i`**: Histórico Narrativo
|
505 |
+
- **`Γ`**: Cineasta (Gerador de Prompt)
|
506 |
+
- **`Ψ`**: Câmera (Gerador de Vídeo)
|
507 |
+
- **`Δ`**: Editor (Extrator de "Eco")
|
508 |
+
- **`F_start`, `F_end`**: Constantes de Frame (Âncoras Temporais)
|
509 |
+
"""
|
510 |
+
)
|
511 |
+
|
512 |
+
|
513 |
+
# --- Ato 6: A Regência (Lógica de Conexão dos Botões) ---
|
514 |
+
def update_reference_visibility(current_count, action):
|
515 |
+
if action == "add": new_count = min(MAX_REFS, current_count + 1)
|
516 |
+
else: new_count = max(0, current_count - 1)
|
517 |
+
return [new_count] + [gr.update(visible=(i < new_count)) for i in range(MAX_REFS)]
|
518 |
+
|
519 |
+
add_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("add")], outputs=[visible_references_state] + aux_ref_rows)
|
520 |
+
remove_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("remove")], outputs=[visible_references_state] + aux_ref_rows)
|
521 |
+
|
522 |
+
director_button.click(
|
523 |
+
fn=get_static_scenes_storyboard,
|
524 |
+
inputs=[num_fragments_input, prompt_input, image_input],
|
525 |
+
outputs=[scene_storyboard_state]
|
526 |
+
).success(
|
527 |
+
fn=lambda s, p: (s, p),
|
528 |
+
inputs=[scene_storyboard_state, prompt_input],
|
529 |
+
outputs=[storyboard_to_show, prompt_geral_state]
|
530 |
+
).success(
|
531 |
+
fn=process_image_to_square,
|
532 |
+
inputs=[image_input],
|
533 |
+
outputs=[processed_ref_path_state]
|
534 |
+
).success(
|
535 |
+
fn=lambda p: p,
|
536 |
+
inputs=[processed_ref_path_state],
|
537 |
+
outputs=[ref_image_inputs[0]]
|
538 |
+
)
|
539 |
+
|
540 |
+
photographer_button.click(
|
541 |
+
fn=run_keyframe_generation,
|
542 |
+
inputs=[scene_storyboard_state, processed_ref_path_state] + ref_image_inputs + ref_task_inputs,
|
543 |
+
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
|
544 |
+
)
|
545 |
+
|
546 |
+
animator_button.click(
|
547 |
+
fn=run_video_production,
|
548 |
+
inputs=[prompt_geral_state, keyframe_images_state, scene_storyboard_state, seed_number, cfg_slider],
|
549 |
+
outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
|
550 |
+
)
|
551 |
+
|
552 |
+
editor_button.click(
|
553 |
+
fn=concatenate_and_trim_masterpiece,
|
554 |
+
inputs=[fragment_list_state],
|
555 |
+
outputs=[final_video_output]
|
556 |
+
)
|
557 |
+
|
558 |
+
if __name__ == "__main__":
|
559 |
+
demo.queue().launch(server_name="0.0.0.0", share=True)
|
dreamo_helpers (3).py
ADDED
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# dreamo_helpers.py
|
2 |
+
# Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências.
|
3 |
+
|
4 |
+
import os
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
import numpy as np
|
8 |
+
from PIL import Image
|
9 |
+
import huggingface_hub
|
10 |
+
import gc
|
11 |
+
from facexlib.utils.face_restoration_helper import FaceRestoreHelper
|
12 |
+
from torchvision.transforms.functional import normalize
|
13 |
+
from dreamo.dreamo_pipeline import DreamOPipeline
|
14 |
+
from dreamo.utils import img2tensor, tensor2img
|
15 |
+
from tools import BEN2
|
16 |
+
|
17 |
+
class Generator:
|
18 |
+
def __init__(self):
|
19 |
+
self.cpu_device = torch.device('cpu')
|
20 |
+
self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
21 |
+
|
22 |
+
print("Carregando modelos DreamO para a CPU...")
|
23 |
+
model_root = 'black-forest-labs/FLUX.1-dev'
|
24 |
+
self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
|
25 |
+
self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
|
26 |
+
|
27 |
+
self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
|
28 |
+
huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
|
29 |
+
self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
|
30 |
+
|
31 |
+
self.face_helper = FaceRestoreHelper(
|
32 |
+
upscale_factor=1, face_size=512, crop_ratio=(1, 1),
|
33 |
+
det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
|
34 |
+
)
|
35 |
+
print("Modelos DreamO prontos (na CPU).")
|
36 |
+
|
37 |
+
def to_gpu(self):
|
38 |
+
if self.gpu_device.type == 'cpu': return
|
39 |
+
print("Movendo modelos DreamO para a GPU...")
|
40 |
+
self.dreamo_pipeline.to(self.gpu_device)
|
41 |
+
self.bg_rm_model.to(self.gpu_device)
|
42 |
+
self.face_helper.device = self.gpu_device
|
43 |
+
self.dreamo_pipeline.t5_embedding.to(self.gpu_device)
|
44 |
+
self.dreamo_pipeline.task_embedding.to(self.gpu_device)
|
45 |
+
self.dreamo_pipeline.idx_embedding.to(self.gpu_device)
|
46 |
+
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
|
47 |
+
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
|
48 |
+
print("Modelos DreamO na GPU.")
|
49 |
+
|
50 |
+
def to_cpu(self):
|
51 |
+
if self.gpu_device.type == 'cpu': return
|
52 |
+
print("Descarregando modelos DreamO da GPU...")
|
53 |
+
self.dreamo_pipeline.to(self.cpu_device)
|
54 |
+
self.bg_rm_model.to(self.cpu_device)
|
55 |
+
self.face_helper.device = self.cpu_device
|
56 |
+
self.dreamo_pipeline.t5_embedding.to(self.cpu_device)
|
57 |
+
self.dreamo_pipeline.task_embedding.to(self.cpu_device)
|
58 |
+
self.dreamo_pipeline.idx_embedding.to(self.cpu_device)
|
59 |
+
if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
|
60 |
+
if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
|
61 |
+
gc.collect()
|
62 |
+
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
63 |
+
|
64 |
+
@torch.inference_mode()
|
65 |
+
# <<<<< MODIFICAÇÃO PRINCIPAL: Aceita uma lista de dicionários de referência >>>>>
|
66 |
+
def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
|
67 |
+
ref_conds = []
|
68 |
+
|
69 |
+
for idx, item in enumerate(reference_items):
|
70 |
+
ref_image_np = item.get('image_np')
|
71 |
+
ref_task = item.get('task')
|
72 |
+
|
73 |
+
if ref_image_np is not None:
|
74 |
+
if ref_task == "id":
|
75 |
+
ref_image = self.get_align_face(ref_image_np)
|
76 |
+
elif ref_task != "style":
|
77 |
+
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
|
78 |
+
else: # Style usa a imagem original
|
79 |
+
ref_image = ref_image_np
|
80 |
+
|
81 |
+
ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
|
82 |
+
ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
|
83 |
+
|
84 |
+
# O modelo DreamO espera o índice começando em 1
|
85 |
+
ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
|
86 |
+
|
87 |
+
image = self.dreamo_pipeline(
|
88 |
+
prompt=prompt,
|
89 |
+
width=width,
|
90 |
+
height=height,
|
91 |
+
num_inference_steps=12,
|
92 |
+
guidance_scale=4.5,
|
93 |
+
ref_conds=ref_conds,
|
94 |
+
generator=torch.Generator(device="cpu").manual_seed(42)
|
95 |
+
).images[0]
|
96 |
+
return image
|
97 |
+
|
98 |
+
@torch.no_grad()
|
99 |
+
def get_align_face(self, img):
|
100 |
+
# ... (lógica inalterada)
|
101 |
+
self.face_helper.clean_all()
|
102 |
+
image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
103 |
+
self.face_helper.read_image(image_bgr)
|
104 |
+
self.face_helper.get_face_landmarks_5(only_center_face=True)
|
105 |
+
self.face_helper.align_warp_face()
|
106 |
+
if len(self.face_helper.cropped_faces) == 0: return None
|
107 |
+
align_face = self.face_helper.cropped_faces[0]
|
108 |
+
input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
|
109 |
+
input_tensor = input_tensor.to(self.gpu_device)
|
110 |
+
parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
|
111 |
+
parsing_out = parsing_out.argmax(dim=1, keepdim=True)
|
112 |
+
bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
|
113 |
+
bg = sum(parsing_out == i for i in bg_label).bool()
|
114 |
+
white_image = torch.ones_like(input_tensor)
|
115 |
+
face_features_image = torch.where(bg, white_image, input_tensor)
|
116 |
+
return tensor2img(face_features_image, rgb2bgr=False)
|
117 |
+
|
118 |
+
# --- Instância Singleton ---
|
119 |
+
print("Inicializando o Pintor de Cenas (DreamO Helper)...")
|
120 |
+
hf_token = os.getenv('HF_TOKEN')
|
121 |
+
if hf_token: huggingface_hub.login(token=hf_token)
|
122 |
+
dreamo_generator_singleton = Generator()
|
123 |
+
print("Pintor de Cenas (DreamO Helper) pronto.")
|