Carlexx commited on
Commit
1914914
·
verified ·
1 Parent(s): c1fc7be

Upload 2 files

Browse files
Files changed (2) hide show
  1. app (51).py +559 -0
  2. dreamo_helpers (3).py +123 -0
app (51).py ADDED
@@ -0,0 +1,559 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
2
+ # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
+ #
4
+ # Contato:
5
+ # Carlos Rodrigues dos Santos
6
7
+ # Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
8
+ #
9
+ # Repositórios e Projetos Relacionados:
10
+ # GitHub: https://github.com/carlex22/Aduc-sdr
11
+ # Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
12
+ # Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
13
+ #
14
+ # Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
15
+ # sob os termos da Licença Pública Geral Affero da GNU como publicada pela
16
+ # Free Software Foundation, seja a versão 3 da Licença, ou
17
+ # (a seu critério) qualquer versão posterior.
18
+ #
19
+ # Este programa é distribuído na esperança de que seja útil,
20
+ # mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
21
+ # COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
22
+ # Licença Pública Geral Affero da GNU para mais detalhes.
23
+ #
24
+ # Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
25
+ # junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
26
+
27
+ # --- app.py (NOVINHO-4.4: O Piloto de Testes - Vetor de Frames) ---
28
+
29
+ # --- Ato 1: A Convocação da Orquestra (Importações) ---
30
+ import gradio as gr
31
+ import torch
32
+ import os
33
+ import yaml
34
+ from PIL import Image, ImageOps
35
+ import shutil
36
+ import gc
37
+ import subprocess
38
+ import google.generativeai as genai
39
+ import numpy as np
40
+ import imageio
41
+ from pathlib import Path
42
+ import huggingface_hub
43
+ import json
44
+ import time
45
+ from typing import Union, List
46
+
47
+ from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
48
+ from dreamo_helpers import dreamo_generator_singleton
49
+
50
+ # --- Ato 2: A Preparação do Palco (Configurações) ---
51
+ config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
52
+ with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
53
+
54
+ LTX_REPO = "Lightricks/LTX-Video"
55
+ models_dir = "downloaded_models_gradio_cpu_init"
56
+ Path(models_dir).mkdir(parents=True, exist_ok=True)
57
+ WORKSPACE_DIR = "aduc_workspace"
58
+ GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
59
+
60
+ VIDEO_FPS = 36
61
+ VIDEO_DURATION_SECONDS = 4
62
+ VIDEO_TOTAL_FRAMES = VIDEO_DURATION_SECONDS * VIDEO_FPS
63
+ CONVERGENCE_FRAMES = 8
64
+ TARGET_RESOLUTION = 720
65
+ MAX_REFS = 4
66
+
67
+ print("Baixando e criando pipelines LTX na CPU...")
68
+ distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
69
+ pipeline_instance = create_ltx_video_pipeline(
70
+ ckpt_path=distilled_model_actual_path,
71
+ precision=PIPELINE_CONFIG_YAML["precision"],
72
+ text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
73
+ sampler=PIPELINE_CONFIG_YAML["sampler"],
74
+ device='cpu'
75
+ )
76
+ print("Modelos LTX prontos (na CPU).")
77
+
78
+
79
+ # --- Ato 3: As Partituras dos Músicos (Funções Corrigidas e Documentadas) ---
80
+
81
+ def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
82
+ if not media_path: raise ValueError("Caminho da mídia de condicionamento não pode ser nulo.")
83
+ return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
84
+
85
+ def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg, progress=gr.Progress()):
86
+ progress(0, desc=f"[TECPIX 5000] Filmando Cena {current_fragment_index}...");
87
+ output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
88
+ try:
89
+ pipeline_instance.to(target_device)
90
+ conditioning_items = []
91
+ for (path, start_frame, strength) in conditioning_items_data:
92
+ tensor = load_conditioning_tensor(path, height, width)
93
+ conditioning_items.append(ConditioningItem(tensor.to(target_device), start_frame, strength))
94
+
95
+ n_val = round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0); actual_num_frames = int(n_val * 8 + 1)
96
+ padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
97
+ padding_vals = calculate_padding(height, width, padded_h, padded_w)
98
+ for cond_item in conditioning_items: cond_item.media_item = torch.nn.functional.pad(cond_item.media_item, padding_vals)
99
+ kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": VIDEO_FPS, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "offload_to_cpu": False, "enhance_prompt": False}
100
+ result_tensor = pipeline_instance(**kwargs).images
101
+ pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
102
+ cropped_tensor = result_tensor[:, :, :VIDEO_TOTAL_FRAMES, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
103
+ with imageio.get_writer(output_path, fps=VIDEO_FPS, codec='libx264', quality=8) as writer:
104
+ for i, frame in enumerate(video_np): progress(i / len(video_np), desc=f"Renderizando frame {i+1}/{len(video_np)}..."); writer.append_data(frame)
105
+ return output_path
106
+ finally:
107
+ pipeline_instance.to('cpu'); gc.collect()
108
+ if torch.cuda.is_available(): torch.cuda.empty_cache()
109
+
110
+ def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
111
+ if not image_path or not os.path.exists(image_path): return None
112
+ try:
113
+ img = Image.open(image_path).convert("RGB")
114
+ img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
115
+ output_filename = f"initial_ref_{size}x{size}.png"
116
+ output_path = os.path.join(WORKSPACE_DIR, output_filename)
117
+ img_square.save(output_path)
118
+ return output_path
119
+ except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
120
+
121
+ def get_static_scenes_storyboard(num_fragments: int, prompt: str, initial_image_path: str):
122
+ if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
123
+ if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
124
+ genai.configure(api_key=GEMINI_API_KEY)
125
+ prompt_file = "prompts/photographer_prompt.txt"
126
+ with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
127
+ director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments))
128
+ model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(initial_image_path)
129
+ response = model.generate_content([director_prompt, img])
130
+ try:
131
+ cleaned_response = response.text.strip().replace("```json", "").replace("```", "")
132
+ storyboard_data = json.loads(cleaned_response)
133
+ return storyboard_data.get("scene_storyboard", [])
134
+ except Exception as e: raise gr.Error(f"O Sonhador (Gemini) falhou ao criar o roteiro: {e}. Resposta: {response.text}")
135
+
136
+ def run_keyframe_generation(storyboard, initial_ref_image_path, *reference_args):
137
+ # ... (código inalterado) ...
138
+ if not storyboard:
139
+ raise gr.Error("Nenhum roteiro para gerar imagens-chave.")
140
+ if not initial_ref_image_path or not os.path.exists(initial_ref_image_path):
141
+ raise gr.Error("A imagem de referência principal é obrigatória para iniciar a pintura.")
142
+
143
+ num_total_refs = MAX_REFS + 1
144
+ ref_paths = list(reference_args[:num_total_refs])
145
+ ref_tasks = list(reference_args[num_total_refs:])
146
+
147
+ with Image.open(initial_ref_image_path) as img:
148
+ width, height = img.size
149
+ width, height = (width // 32) * 32, (height // 32) * 32
150
+
151
+ keyframe_paths = []
152
+ log_history = ""
153
+
154
+ try:
155
+ dreamo_generator_singleton.to_gpu()
156
+
157
+ log_history += f"Pintando Keyframe Inicial (Cena 1/{len(storyboard)})...\n"
158
+ yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths)}
159
+
160
+ references_for_first_frame = []
161
+ references_for_first_frame.append({'image_np': np.array(Image.open(initial_ref_image_path).convert("RGB")), 'task': 'ip'})
162
+ log_history += f" - Usando imagem de referência principal '{os.path.basename(initial_ref_image_path)}' (Tarefa: ip)\n"
163
+
164
+ for j in range(1, num_total_refs):
165
+ aux_path, aux_task = ref_paths[j], ref_tasks[j]
166
+ if aux_path and os.path.exists(aux_path):
167
+ references_for_first_frame.append({'image_np': np.array(Image.open(aux_path).convert("RGB")), 'task': aux_task})
168
+ log_history += f" - Usando ref. auxiliar: {os.path.basename(aux_path)} (Tarefa: {aux_task})\n"
169
+
170
+ first_prompt = storyboard[0]
171
+ output_path = os.path.join(WORKSPACE_DIR, "keyframe_1.png")
172
+ image = dreamo_generator_singleton.generate_image_with_gpu_management(
173
+ reference_items=references_for_first_frame, prompt=first_prompt, width=width, height=height
174
+ )
175
+ image.save(output_path)
176
+ keyframe_paths.append(output_path)
177
+ current_ref_image_path = output_path
178
+
179
+ for i, prompt in enumerate(storyboard[1:], start=1):
180
+ log_history += f"\nPintando Cena Sequencial {i+1}/{len(storyboard)}...\n"
181
+ yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths)}
182
+
183
+ reference_items_for_dreamo = []
184
+ sequential_ref_task = ref_tasks[0]
185
+ reference_items_for_dreamo.append({'image_np': np.array(Image.open(current_ref_image_path).convert("RGB")), 'task': sequential_ref_task})
186
+ log_history += f" - Usando ref. sequencial: {os.path.basename(current_ref_image_path)} (Tarefa: {sequential_ref_task})\n"
187
+
188
+ for j in range(1, num_total_refs):
189
+ aux_path, aux_task = ref_paths[j], ref_tasks[j]
190
+ if aux_path and os.path.exists(aux_path):
191
+ reference_items_for_dreamo.append({'image_np': np.array(Image.open(aux_path).convert("RGB")), 'task': aux_task})
192
+ log_history += f" - Usando ref. auxiliar: {os.path.basename(aux_path)} (Tarefa: {aux_task})\n"
193
+
194
+ output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
195
+ image = dreamo_generator_singleton.generate_image_with_gpu_management(
196
+ reference_items=reference_items_for_dreamo, prompt=prompt, width=width, height=height
197
+ )
198
+ image.save(output_path)
199
+ keyframe_paths.append(output_path)
200
+ current_ref_image_path = output_path
201
+
202
+ except Exception as e:
203
+ raise gr.Error(f"O Pintor (DreamO) encontrou um erro: {e}")
204
+ finally:
205
+ dreamo_generator_singleton.to_cpu()
206
+
207
+ log_history += "\nPintura de todos os keyframes concluída.\n"
208
+ yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=keyframe_paths), keyframe_images_state: keyframe_paths}
209
+
210
+ ####
211
+ # Gera um prompt de movimento para uma transição.
212
+ # Agora é flexível: aceita uma única imagem de partida ou uma lista de frames de contexto.
213
+ ####
214
+ def get_single_motion_prompt(user_prompt: str, story_history: str, start_media_paths: Union[str, List[str]], end_keyframe_path: str, prompt_filename: str):
215
+ if not GEMINI_API_KEY:
216
+ raise gr.Error("Chave da API Gemini não configurada!")
217
+
218
+ if isinstance(start_media_paths, str):
219
+ start_media_paths = [start_media_paths]
220
+
221
+ uploaded_files = []
222
+ try:
223
+ genai.configure(api_key=GEMINI_API_KEY)
224
+ model = genai.GenerativeModel('gemini-2.0-flash')
225
+
226
+ for path in start_media_paths:
227
+ print(f"Cineasta: Fazendo upload do arquivo de contexto '{path}'...")
228
+ file_to_upload = genai.upload_file(path)
229
+
230
+ print(f"Cineasta: Aguardando arquivo '{file_to_upload.name}' ficar ATIVO...")
231
+ timeout_seconds = 180
232
+ start_time = time.time()
233
+
234
+ while file_to_upload.state.name == "PROCESSING":
235
+ if time.time() - start_time > timeout_seconds:
236
+ raise TimeoutError(f"Tempo de espera para '{file_to_upload.name}' excedido.")
237
+ time.sleep(2)
238
+ file_to_upload = genai.get_file(name=file_to_upload.name)
239
+
240
+ if file_to_upload.state.name != "ACTIVE":
241
+ raise gr.Error(f"O arquivo de mídia '{file_to_upload.name}' falhou no processamento. Estado: {file_to_upload.state.name}")
242
+
243
+ uploaded_files.append(file_to_upload)
244
+
245
+ print(f"Cineasta: Todos os {len(uploaded_files)} arquivos de contexto estão ATIVOS. Gerando prompt...")
246
+ end_media = Image.open(end_keyframe_path)
247
+
248
+ prompt_file_path = os.path.join(os.path.dirname(__file__), "prompts", prompt_filename)
249
+ with open(prompt_file_path, "r", encoding="utf-8") as f:
250
+ template = f.read()
251
+
252
+ director_prompt = template.format(user_prompt=user_prompt, story_history=story_history)
253
+
254
+ model_contents = [director_prompt] + uploaded_files + [end_media]
255
+ response = model.generate_content(model_contents)
256
+
257
+ cleaned_text = response.text.strip().replace("```json", "").replace("```", "")
258
+ motion_data = json.loads(cleaned_text)
259
+ return motion_data.get("motion_prompt", "")
260
+
261
+ except Exception as e:
262
+ response_text = getattr(e, 'text', 'Nenhuma resposta de texto disponível.')
263
+ raise gr.Error(f"O Cineasta (Gemini) falhou ao criar o prompt de movimento: {e}. Resposta: {response_text}")
264
+
265
+ finally:
266
+ for f in uploaded_files:
267
+ try:
268
+ genai.delete_file(f.name)
269
+ except Exception as delete_e:
270
+ print(f"Aviso: Falha ao deletar o arquivo temporário {f.name} da API Gemini. Erro: {delete_e}")
271
+
272
+ ####
273
+ # NOVA FUNÇÃO: Extrai os 3 frames de contexto (vetor de movimento) de um vídeo.
274
+ ####
275
+ def extract_context_frames(input_video_path: str, fragment_index: int) -> List[str]:
276
+ print(f"Editor: Extraindo vetor de frames do fragmento {fragment_index}...")
277
+ output_paths = []
278
+ try:
279
+ command_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=noprint_wrappers=1:nokey=1 \"{input_video_path}\""
280
+ result_probe = subprocess.run(command_probe, shell=True, check=True, capture_output=True, text=True)
281
+ total_frames = int(result_probe.stdout.strip())
282
+
283
+ if total_frames <= CONVERGENCE_FRAMES:
284
+ # Se o vídeo for muito curto, apenas retorna o último frame 3 vezes.
285
+ frame_indices = [total_frames - 1] * 3
286
+ else:
287
+ # Frame final, frame a 8 frames de distância, frame a 16 frames de distância
288
+ frame_indices = [total_frames - 1 - CONVERGENCE_FRAMES, total_frames - 1 - (CONVERGENCE_FRAMES // 2), total_frames - 1]
289
+
290
+ for i, frame_idx in enumerate(frame_indices):
291
+ output_path = os.path.join(WORKSPACE_DIR, f"context_{fragment_index}_frame_{i+1}.png")
292
+ command_extract = f"ffmpeg -y -v error -i \"{input_video_path}\" -vf \"select='eq(n,{frame_idx})'\" -frames:v 1 \"{output_path}\""
293
+ subprocess.run(command_extract, shell=True, check=True)
294
+ output_paths.append(output_path)
295
+
296
+ print(f"Editor: Vetor de frames extraído para: {output_paths}")
297
+ return output_paths
298
+ except Exception as e:
299
+ error_message = f"Editor Mágico (FFmpeg) falhou ao extrair os frames de contexto: {e}"
300
+ if hasattr(e, 'stderr'): error_message += f"\nDetalhes: {e.stderr}"
301
+ raise gr.Error(error_message)
302
+
303
+ ####
304
+ # Orquestra a produção de todos os fragmentos de vídeo com a nova lógica de vetor de frames.
305
+ ####
306
+ def run_video_production(prompt_geral, keyframe_image_paths, scene_storyboard, seed, cfg, progress=gr.Progress()):
307
+ if not keyframe_image_paths or len(keyframe_image_paths) < 2:
308
+ raise gr.Error("Pinte pelo menos 2 keyframes na Etapa 2 para produzir as transições.")
309
+
310
+ log_history = "\n--- FASE 3/4: A Câmera e o Cineasta estão filmando em sequência just-in-time...\n"
311
+ yield {production_log_output: log_history, video_gallery_glitch: []}
312
+
313
+ video_fragments = []
314
+ start_media_for_prompt = keyframe_image_paths[0]
315
+ previous_media_for_ltx = keyframe_image_paths[0]
316
+
317
+ story_history = ""
318
+ with Image.open(keyframe_image_paths[0]) as img:
319
+ width, height = img.size
320
+
321
+ num_transitions = len(keyframe_image_paths) - 1
322
+ for i in range(num_transitions):
323
+ end_keyframe_path = keyframe_image_paths[i+1]
324
+ is_first_fragment = (i == 0)
325
+ fragment_num = i + 1
326
+
327
+ progress(i / num_transitions, desc=f"Planejando Fragmento {fragment_num}/{num_transitions}")
328
+
329
+ log_history += f"\n--- FRAGMENTO {fragment_num} ---\n"
330
+ log_history += "Cineasta (Gemini) está analisando o contexto de movimento...\n"
331
+ yield {production_log_output: log_history}
332
+
333
+ if is_first_fragment:
334
+ prompt_filename_to_use = "director_motion_prompt.txt"
335
+ story_history = f"A história começa com a transição da cena '{scene_storyboard[0]}' para '{scene_storyboard[1]}'."
336
+ else:
337
+ prompt_filename_to_use = "director_motion_prompt_vector.txt"
338
+ story_history += f"\n- Em seguida, a cena muda de '{scene_storyboard[i]}' para '{scene_storyboard[i+1]}'."
339
+
340
+ current_motion_prompt = get_single_motion_prompt(prompt_geral, story_history, start_media_for_prompt, end_keyframe_path, prompt_filename_to_use)
341
+
342
+ log_history += f"Instrução do Cineasta ({prompt_filename_to_use}): '{current_motion_prompt}'\n"
343
+ log_history += f"Filmando transição de '{os.path.basename(previous_media_for_ltx)}' para '{os.path.basename(end_keyframe_path)}'...\n"
344
+ yield {production_log_output: log_history}
345
+
346
+ # LTX ainda usa apenas uma imagem de partida (o último frame do vídeo anterior)
347
+ end_frame_index = VIDEO_TOTAL_FRAMES - CONVERGENCE_FRAMES
348
+ conditioning_items_data = [(previous_media_for_ltx, 0, 1.0), (end_keyframe_path, end_frame_index, 1.0)]
349
+
350
+ fragment_path = run_ltx_animation(fragment_num, current_motion_prompt, conditioning_items_data, width, height, seed, cfg, progress)
351
+ video_fragments.append(fragment_path)
352
+
353
+ log_history += f"Fragmento {fragment_num} filmado. Preparando contexto para a próxima cena...\n"
354
+ yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
355
+
356
+ # Prepara as entradas para a PRÓXIMA iteração
357
+ context_frames = extract_context_frames(fragment_path, fragment_num)
358
+ start_media_for_prompt = context_frames # Gemini usará os 3 frames
359
+ previous_media_for_ltx = context_frames[-1] # LTX usará apenas o último frame
360
+
361
+ log_history += "\nFilmagem de todos os fragmentos de transição concluída.\n"
362
+ progress(1.0, desc="Produção Concluída.")
363
+ yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
364
+
365
+ def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
366
+ # ... (código inalterado) ...
367
+ if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
368
+ progress(0.2, desc="Aparando fragmentos para transições suaves...");
369
+ trimmed_dir = os.path.join(WORKSPACE_DIR, "trimmed"); os.makedirs(trimmed_dir, exist_ok=True)
370
+ paths_for_concat = []
371
+ try:
372
+ for i, path in enumerate(fragment_paths):
373
+ if i == len(fragment_paths) - 1:
374
+ paths_for_concat.append(path)
375
+ continue
376
+
377
+ trimmed_path = os.path.join(trimmed_dir, f"fragment_{i}_trimmed.mp4")
378
+ probe_cmd = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=noprint_wrappers=1:nokey=1 \"{path}\""
379
+ result = subprocess.run(probe_cmd, shell=True, check=True, capture_output=True, text=True)
380
+ total_frames = int(result.stdout.strip())
381
+ frames_to_keep = total_frames - CONVERGENCE_FRAMES
382
+ if frames_to_keep <= 0:
383
+ shutil.copyfile(path, trimmed_path)
384
+ paths_for_concat.append(trimmed_path)
385
+ continue
386
+
387
+ trim_cmd = f"ffmpeg -y -v error -i \"{path}\" -vf \"select='lt(n,{frames_to_keep})'\" -c:v libx264 -preset ultrafast -an \"{trimmed_path}\""
388
+ subprocess.run(trim_cmd, shell=True, check=True, capture_output=True, text=True)
389
+ paths_for_concat.append(trimmed_path)
390
+
391
+ progress(0.6, desc="Montando a obra-prima final...")
392
+ list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "obra_prima_final.mp4")
393
+ with open(list_file_path, "w") as f:
394
+ for p in paths_for_concat: f.write(f"file '{os.path.abspath(p)}'\n")
395
+ concat_cmd = f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\""
396
+ subprocess.run(concat_cmd, shell=True, check=True, capture_output=True, text=True)
397
+ return final_output_path
398
+ except (subprocess.CalledProcessError, ValueError) as e:
399
+ error_message = f"FFmpeg falhou durante a pós-produção (corte e concatenação): {e}"
400
+ if hasattr(e, 'stderr'): error_message += f"\nDetalhes do erro do FFmpeg: {e.stderr}"
401
+ raise gr.Error(error_message)
402
+
403
+
404
+ # --- Ato 5: A Interface com o Mundo ---
405
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
406
+ gr.Markdown("# NOVINHO-4.4 (Piloto de Testes - Vetor de Frames)\n*By Carlex & Gemini & DreamO*")
407
+
408
+ # ... (Interface inalterada) ...
409
+ if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
410
+ os.makedirs(WORKSPACE_DIR)
411
+ Path("examples").mkdir(exist_ok=True)
412
+
413
+ scene_storyboard_state = gr.State([])
414
+ keyframe_images_state = gr.State([])
415
+ fragment_list_state = gr.State([])
416
+ prompt_geral_state = gr.State("")
417
+ processed_ref_path_state = gr.State("")
418
+ visible_references_state = gr.State(0)
419
+
420
+ # --- ETAPA 1: O ROTEIRO ---
421
+ gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (Sonhador)")
422
+ with gr.Row():
423
+ with gr.Column(scale=1):
424
+ prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
425
+ num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Cenas")
426
+ image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
427
+ director_button = gr.Button("▶️ 1. Gerar Roteiro de Cenas", variant="primary")
428
+ with gr.Column(scale=2):
429
+ storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
430
+
431
+ # --- ETAPA 2: OS KEYFRAMES ---
432
+ gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (Pintor)")
433
+ with gr.Row():
434
+ with gr.Column(scale=2):
435
+ gr.Markdown("### Controles do Pintor (DreamO)")
436
+ gr.Markdown("**Tarefas:** `style` (estilo), `ip` (conteúdo), `id` (identidade).")
437
+ ref_image_inputs, ref_task_inputs, aux_ref_rows = [], [], []
438
+ with gr.Group():
439
+ with gr.Row():
440
+ ref_image_inputs.append(gr.Image(label="Referência Sequencial (Automática)", type="filepath", interactive=False))
441
+ ref_task_inputs.append(gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa Seq."))
442
+ for i in range(MAX_REFS):
443
+ with gr.Row(visible=False) as ref_row_aux:
444
+ ref_image_inputs.append(gr.Image(label=f"Ref. Auxiliar {i+1}", type="filepath"))
445
+ ref_task_inputs.append(gr.Dropdown(choices=["ip", "id", "style"], value="ip", label=f"Tarefa Aux. {i+1}"))
446
+ aux_ref_rows.append(ref_row_aux)
447
+ with gr.Row():
448
+ add_ref_button = gr.Button("➕ Add Ref.")
449
+ remove_ref_button = gr.Button("➖ Rem. Ref.")
450
+ photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave", variant="primary")
451
+ with gr.Column(scale=1):
452
+ keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False)
453
+ keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
454
+
455
+ # --- ETAPA 3: A PRODUÇÃO ---
456
+ gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (Cineasta e Câmera)")
457
+ with gr.Row():
458
+ with gr.Column(scale=1):
459
+ with gr.Row():
460
+ seed_number = gr.Number(42, label="Seed")
461
+ cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
462
+ animator_button = gr.Button("▶️ 3. Produzir Cenas em Vídeo", variant="primary")
463
+ production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
464
+ with gr.Column(scale=1):
465
+ video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados (com sobreposição)", object_fit="contain", height="auto", type="video")
466
+
467
+ # --- ETAPA 4: PÓS-PRODUÇÃO ---
468
+ gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
469
+ editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
470
+ final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
471
+
472
+ # --- Rodapé Filosófico ---
473
+ gr.Markdown(
474
+ """
475
+ ---
476
+ ### A Arquitetura ADUC-SDR: O Esquema Matemático
477
+ A geração de vídeo é governada por uma função seccional que define como cada fragmento (`V_i`) é criado, operando em dois regimes distintos:
478
+
479
+ ---
480
+ #### **FÓRMULA 1: O FRAGMENTO INICIAL (Gênesis, `i=1`)**
481
+ *Define a criação do primeiro clipe a partir de imagens estáticas.*
482
+
483
+ **Planejamento:** `P_1 = Γ_initial( K_1, K_2, P_geral )`
484
+
485
+ **Execução:** `V_1 = Ψ( { (K_1, F_start), (K_2, F_end) }, P_1 )`
486
+
487
+ ---
488
+ #### **FÓRMULA 2: A CADEIA CAUSAL (Momentum, `i > 1`)**
489
+ *Define a criação dos fragmentos subsequentes, garantindo a continuidade através do "eco".*
490
+
491
+ **Destilação:** `C_(i-1) = Δ(V_(i-1))`
492
+
493
+ **Planejamento:** `P_i = Γ_transition( C_(i-1), K_(i+1), P_geral, H_(i-1) )`
494
+
495
+ **Execução:** `V_i = Ψ( { (C_(i-1), F_start), (K_(i+1), F_end) }, P_i )`
496
+
497
+ ---
498
+ #### **Componentes (O Léxico da Arquitetura):**
499
+ - **`V_i`**: Fragmento de Vídeo
500
+ - **`K_i`**: Keyframe (Imagem Estática)
501
+ - **`C_i`**: "Eco" Causal (Clipe de Vídeo)
502
+ - **`P_i`**: Prompt de Movimento
503
+ - **`P_geral`**: Prompt Geral (Intenção do Diretor)
504
+ - **`H_i`**: Histórico Narrativo
505
+ - **`Γ`**: Cineasta (Gerador de Prompt)
506
+ - **`Ψ`**: Câmera (Gerador de Vídeo)
507
+ - **`Δ`**: Editor (Extrator de "Eco")
508
+ - **`F_start`, `F_end`**: Constantes de Frame (Âncoras Temporais)
509
+ """
510
+ )
511
+
512
+
513
+ # --- Ato 6: A Regência (Lógica de Conexão dos Botões) ---
514
+ def update_reference_visibility(current_count, action):
515
+ if action == "add": new_count = min(MAX_REFS, current_count + 1)
516
+ else: new_count = max(0, current_count - 1)
517
+ return [new_count] + [gr.update(visible=(i < new_count)) for i in range(MAX_REFS)]
518
+
519
+ add_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("add")], outputs=[visible_references_state] + aux_ref_rows)
520
+ remove_ref_button.click(fn=update_reference_visibility, inputs=[visible_references_state, gr.State("remove")], outputs=[visible_references_state] + aux_ref_rows)
521
+
522
+ director_button.click(
523
+ fn=get_static_scenes_storyboard,
524
+ inputs=[num_fragments_input, prompt_input, image_input],
525
+ outputs=[scene_storyboard_state]
526
+ ).success(
527
+ fn=lambda s, p: (s, p),
528
+ inputs=[scene_storyboard_state, prompt_input],
529
+ outputs=[storyboard_to_show, prompt_geral_state]
530
+ ).success(
531
+ fn=process_image_to_square,
532
+ inputs=[image_input],
533
+ outputs=[processed_ref_path_state]
534
+ ).success(
535
+ fn=lambda p: p,
536
+ inputs=[processed_ref_path_state],
537
+ outputs=[ref_image_inputs[0]]
538
+ )
539
+
540
+ photographer_button.click(
541
+ fn=run_keyframe_generation,
542
+ inputs=[scene_storyboard_state, processed_ref_path_state] + ref_image_inputs + ref_task_inputs,
543
+ outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
544
+ )
545
+
546
+ animator_button.click(
547
+ fn=run_video_production,
548
+ inputs=[prompt_geral_state, keyframe_images_state, scene_storyboard_state, seed_number, cfg_slider],
549
+ outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
550
+ )
551
+
552
+ editor_button.click(
553
+ fn=concatenate_and_trim_masterpiece,
554
+ inputs=[fragment_list_state],
555
+ outputs=[final_video_output]
556
+ )
557
+
558
+ if __name__ == "__main__":
559
+ demo.queue().launch(server_name="0.0.0.0", share=True)
dreamo_helpers (3).py ADDED
@@ -0,0 +1,123 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # dreamo_helpers.py
2
+ # Módulo de serviço para o DreamO, com gestão de memória e aceitando uma lista dinâmica de referências.
3
+
4
+ import os
5
+ import cv2
6
+ import torch
7
+ import numpy as np
8
+ from PIL import Image
9
+ import huggingface_hub
10
+ import gc
11
+ from facexlib.utils.face_restoration_helper import FaceRestoreHelper
12
+ from torchvision.transforms.functional import normalize
13
+ from dreamo.dreamo_pipeline import DreamOPipeline
14
+ from dreamo.utils import img2tensor, tensor2img
15
+ from tools import BEN2
16
+
17
+ class Generator:
18
+ def __init__(self):
19
+ self.cpu_device = torch.device('cpu')
20
+ self.gpu_device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
21
+
22
+ print("Carregando modelos DreamO para a CPU...")
23
+ model_root = 'black-forest-labs/FLUX.1-dev'
24
+ self.dreamo_pipeline = DreamOPipeline.from_pretrained(model_root, torch_dtype=torch.bfloat16)
25
+ self.dreamo_pipeline.load_dreamo_model(self.cpu_device, use_turbo=True)
26
+
27
+ self.bg_rm_model = BEN2.BEN_Base().to(self.cpu_device).eval()
28
+ huggingface_hub.hf_hub_download(repo_id='PramaLLC/BEN2', filename='BEN2_Base.pth', local_dir='models')
29
+ self.bg_rm_model.loadcheckpoints('models/BEN2_Base.pth')
30
+
31
+ self.face_helper = FaceRestoreHelper(
32
+ upscale_factor=1, face_size=512, crop_ratio=(1, 1),
33
+ det_model='retinaface_resnet50', save_ext='png', device=self.cpu_device,
34
+ )
35
+ print("Modelos DreamO prontos (na CPU).")
36
+
37
+ def to_gpu(self):
38
+ if self.gpu_device.type == 'cpu': return
39
+ print("Movendo modelos DreamO para a GPU...")
40
+ self.dreamo_pipeline.to(self.gpu_device)
41
+ self.bg_rm_model.to(self.gpu_device)
42
+ self.face_helper.device = self.gpu_device
43
+ self.dreamo_pipeline.t5_embedding.to(self.gpu_device)
44
+ self.dreamo_pipeline.task_embedding.to(self.gpu_device)
45
+ self.dreamo_pipeline.idx_embedding.to(self.gpu_device)
46
+ if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.gpu_device)
47
+ if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.gpu_device)
48
+ print("Modelos DreamO na GPU.")
49
+
50
+ def to_cpu(self):
51
+ if self.gpu_device.type == 'cpu': return
52
+ print("Descarregando modelos DreamO da GPU...")
53
+ self.dreamo_pipeline.to(self.cpu_device)
54
+ self.bg_rm_model.to(self.cpu_device)
55
+ self.face_helper.device = self.cpu_device
56
+ self.dreamo_pipeline.t5_embedding.to(self.cpu_device)
57
+ self.dreamo_pipeline.task_embedding.to(self.cpu_device)
58
+ self.dreamo_pipeline.idx_embedding.to(self.cpu_device)
59
+ if hasattr(self.face_helper, 'face_det'): self.face_helper.face_det.to(self.cpu_device)
60
+ if hasattr(self.face_helper, 'face_parse'): self.face_helper.face_parse.to(self.cpu_device)
61
+ gc.collect()
62
+ if torch.cuda.is_available(): torch.cuda.empty_cache()
63
+
64
+ @torch.inference_mode()
65
+ # <<<<< MODIFICAÇÃO PRINCIPAL: Aceita uma lista de dicionários de referência >>>>>
66
+ def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
67
+ ref_conds = []
68
+
69
+ for idx, item in enumerate(reference_items):
70
+ ref_image_np = item.get('image_np')
71
+ ref_task = item.get('task')
72
+
73
+ if ref_image_np is not None:
74
+ if ref_task == "id":
75
+ ref_image = self.get_align_face(ref_image_np)
76
+ elif ref_task != "style":
77
+ ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
78
+ else: # Style usa a imagem original
79
+ ref_image = ref_image_np
80
+
81
+ ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
82
+ ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
83
+
84
+ # O modelo DreamO espera o índice começando em 1
85
+ ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
86
+
87
+ image = self.dreamo_pipeline(
88
+ prompt=prompt,
89
+ width=width,
90
+ height=height,
91
+ num_inference_steps=12,
92
+ guidance_scale=4.5,
93
+ ref_conds=ref_conds,
94
+ generator=torch.Generator(device="cpu").manual_seed(42)
95
+ ).images[0]
96
+ return image
97
+
98
+ @torch.no_grad()
99
+ def get_align_face(self, img):
100
+ # ... (lógica inalterada)
101
+ self.face_helper.clean_all()
102
+ image_bgr = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
103
+ self.face_helper.read_image(image_bgr)
104
+ self.face_helper.get_face_landmarks_5(only_center_face=True)
105
+ self.face_helper.align_warp_face()
106
+ if len(self.face_helper.cropped_faces) == 0: return None
107
+ align_face = self.face_helper.cropped_faces[0]
108
+ input_tensor = img2tensor(align_face, bgr2rgb=True).unsqueeze(0) / 255.0
109
+ input_tensor = input_tensor.to(self.gpu_device)
110
+ parsing_out = self.face_helper.face_parse(normalize(input_tensor, [0.485, 0.456, 0.406], [0.229, 0.224, 0.225]))[0]
111
+ parsing_out = parsing_out.argmax(dim=1, keepdim=True)
112
+ bg_label = [0, 16, 18, 7, 8, 9, 14, 15]
113
+ bg = sum(parsing_out == i for i in bg_label).bool()
114
+ white_image = torch.ones_like(input_tensor)
115
+ face_features_image = torch.where(bg, white_image, input_tensor)
116
+ return tensor2img(face_features_image, rgb2bgr=False)
117
+
118
+ # --- Instância Singleton ---
119
+ print("Inicializando o Pintor de Cenas (DreamO Helper)...")
120
+ hf_token = os.getenv('HF_TOKEN')
121
+ if hf_token: huggingface_hub.login(token=hf_token)
122
+ dreamo_generator_singleton = Generator()
123
+ print("Pintor de Cenas (DreamO Helper) pronto.")