Upload ai_studio_code (97).py
Browse files- ai_studio_code (97).py +540 -0
ai_studio_code (97).py
ADDED
@@ -0,0 +1,540 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
|
2 |
+
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
3 |
+
#
|
4 |
+
# Contato:
|
5 |
+
# Carlos Rodrigues dos Santos
|
6 | |
7 |
+
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
8 |
+
#
|
9 |
+
# Repositórios e Projetos Relacionados:
|
10 |
+
# GitHub: https://github.com/carlex22/Aduc-sdr
|
11 |
+
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
|
12 |
+
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
|
13 |
+
#
|
14 |
+
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
|
15 |
+
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
|
16 |
+
# Free Software Foundation, seja a versão 3 da Licença, ou
|
17 |
+
# (a seu critério) qualquer versão posterior.
|
18 |
+
#
|
19 |
+
# Este programa é distribuído na esperança de que seja útil,
|
20 |
+
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
|
21 |
+
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
|
22 |
+
# Licença Pública Geral Affero da GNU para mais detalhes.
|
23 |
+
#
|
24 |
+
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
|
25 |
+
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
|
26 |
+
|
27 |
+
# --- app_gpu.py (NOVINHO-6.1: Eco + Déjà Vu para HF Spaces) ---
|
28 |
+
|
29 |
+
# --- Ato 1: A Convocação da Orquestra (Importações) ---
|
30 |
+
import gradio as gr
|
31 |
+
import torch
|
32 |
+
import os
|
33 |
+
import yaml
|
34 |
+
from PIL import Image, ImageOps, ExifTags
|
35 |
+
import shutil
|
36 |
+
import gc
|
37 |
+
import subprocess
|
38 |
+
import google.generativeai as genai
|
39 |
+
import numpy as np
|
40 |
+
import imageio
|
41 |
+
from pathlib import Path
|
42 |
+
import huggingface_hub
|
43 |
+
import json
|
44 |
+
import time
|
45 |
+
import spaces # Importação para o decorador de GPU do Hugging Face Spaces
|
46 |
+
|
47 |
+
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
|
48 |
+
from dreamo_helpers import dreamo_generator_singleton
|
49 |
+
|
50 |
+
# --- Ato 2: A Preparação do Palco (Configurações) ---
|
51 |
+
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
52 |
+
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
53 |
+
|
54 |
+
LTX_REPO = "Lightricks/LTX-Video"
|
55 |
+
models_dir = "downloaded_models_gradio"
|
56 |
+
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
57 |
+
WORKSPACE_DIR = "aduc_workspace"
|
58 |
+
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
59 |
+
|
60 |
+
VIDEO_FPS = 24
|
61 |
+
TARGET_RESOLUTION = 420
|
62 |
+
|
63 |
+
print("Criando pipelines LTX na CPU (estado de repouso)...")
|
64 |
+
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
65 |
+
pipeline_instance = create_ltx_video_pipeline(
|
66 |
+
ckpt_path=distilled_model_actual_path,
|
67 |
+
precision=PIPELINE_CONFIG_YAML["precision"],
|
68 |
+
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
69 |
+
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
70 |
+
device='cpu' # Os modelos iniciam na CPU para economizar recursos
|
71 |
+
)
|
72 |
+
print("Modelos LTX prontos (na CPU).")
|
73 |
+
|
74 |
+
|
75 |
+
# --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
|
76 |
+
|
77 |
+
def robust_json_parser(raw_text: str) -> dict:
|
78 |
+
try:
|
79 |
+
start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
|
80 |
+
if start_index != -1 and end_index != -1 and end_index > start_index:
|
81 |
+
json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str)
|
82 |
+
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
|
83 |
+
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
|
84 |
+
|
85 |
+
def extract_image_exif(image_path: str) -> str:
|
86 |
+
try:
|
87 |
+
img = Image.open(image_path); exif_data = img._getexif()
|
88 |
+
if not exif_data: return "No EXIF metadata found."
|
89 |
+
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
|
90 |
+
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
|
91 |
+
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
|
92 |
+
return metadata_str if metadata_str else "No relevant EXIF metadata found."
|
93 |
+
except Exception: return "Could not read EXIF data."
|
94 |
+
|
95 |
+
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
|
96 |
+
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
97 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
98 |
+
exif_metadata = extract_image_exif(initial_image_path)
|
99 |
+
prompt_file = "prompts/unified_storyboard_prompt.txt"
|
100 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
101 |
+
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
|
102 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
103 |
+
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path)
|
104 |
+
print("Gerando roteiro com análise de visão integrada...")
|
105 |
+
response = model.generate_content([director_prompt, img])
|
106 |
+
try:
|
107 |
+
storyboard_data = robust_json_parser(response.text)
|
108 |
+
storyboard = storyboard_data.get("scene_storyboard", [])
|
109 |
+
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
|
110 |
+
return storyboard
|
111 |
+
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}")
|
112 |
+
|
113 |
+
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
|
114 |
+
genai.configure(api_key=GEMINI_API_KEY)
|
115 |
+
prompt_file = "prompts/img2img_evolution_prompt.txt"
|
116 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
117 |
+
director_prompt = template.format(target_scene_description=target_scene_description)
|
118 |
+
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path)
|
119 |
+
response = model.generate_content([director_prompt, "Previous Image:", img])
|
120 |
+
return response.text.strip().replace("\"", "")
|
121 |
+
|
122 |
+
@spaces.GPU(duration=180) # Ativa a GPU para esta função com timeout de 3 minutos
|
123 |
+
def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()):
|
124 |
+
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
|
125 |
+
initial_ref_image_path = ref_images_tasks[0]['image']
|
126 |
+
if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.")
|
127 |
+
log_history = ""; generated_images_for_gallery = []
|
128 |
+
try:
|
129 |
+
dreamo_generator_singleton.to_gpu() # Move o modelo para a GPU ativada
|
130 |
+
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
|
131 |
+
keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path
|
132 |
+
for i, scene_description in enumerate(storyboard):
|
133 |
+
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
|
134 |
+
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
|
135 |
+
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
|
136 |
+
reference_items = []
|
137 |
+
fixed_references_basenames = [os.path.basename(item['image']) for item in ref_images_tasks if item['image']]
|
138 |
+
for item in ref_images_tasks:
|
139 |
+
if item['image']:
|
140 |
+
reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']})
|
141 |
+
dynamic_references_paths = keyframe_paths[-3:]
|
142 |
+
for ref_path in dynamic_references_paths:
|
143 |
+
if os.path.basename(ref_path) not in fixed_references_basenames:
|
144 |
+
reference_items.append({'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': 'ip'})
|
145 |
+
log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n"
|
146 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
|
147 |
+
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
|
148 |
+
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height)
|
149 |
+
image.save(output_path)
|
150 |
+
keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path
|
151 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
|
152 |
+
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
|
153 |
+
finally:
|
154 |
+
dreamo_generator_singleton.to_cpu() # Libera a VRAM da GPU
|
155 |
+
gc.collect()
|
156 |
+
torch.cuda.empty_cache()
|
157 |
+
log_history += "\nPintura de todos os keyframes concluída.\n"
|
158 |
+
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths}
|
159 |
+
|
160 |
+
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str):
|
161 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
162 |
+
try:
|
163 |
+
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/initial_motion_prompt.txt"
|
164 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
165 |
+
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
|
166 |
+
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
|
167 |
+
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
|
168 |
+
response = model.generate_content(model_contents)
|
169 |
+
return response.text.strip()
|
170 |
+
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
171 |
+
|
172 |
+
def get_dynamic_motion_prompt(user_prompt, story_history, memory_media_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc):
|
173 |
+
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
174 |
+
try:
|
175 |
+
genai.configure(api_key=GEMINI_API_KEY); model = genai.GenerativeModel('gemini-1.5-flash'); prompt_file = "prompts/dynamic_motion_prompt.txt"
|
176 |
+
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
177 |
+
cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc)
|
178 |
+
|
179 |
+
with imageio.get_reader(memory_media_path) as reader:
|
180 |
+
mem_img = Image.fromarray(reader.get_data(0))
|
181 |
+
|
182 |
+
path_img, dest_img = Image.open(path_image_path), Image.open(destination_image_path)
|
183 |
+
model_contents = ["START Image (from Kinetic Echo):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt]
|
184 |
+
response = model.generate_content(model_contents)
|
185 |
+
return response.text.strip()
|
186 |
+
except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
187 |
+
|
188 |
+
@spaces.GPU(duration=360) # Ativa a GPU com timeout de 6 minutos para a geração de vídeo
|
189 |
+
def run_video_production(
|
190 |
+
video_duration_seconds, video_fps, eco_video_frames, use_attention_slicing,
|
191 |
+
fragment_duration_frames, mid_cond_strength, num_inference_steps,
|
192 |
+
prompt_geral, keyframe_images_state, scene_storyboard, cfg,
|
193 |
+
progress=gr.Progress()
|
194 |
+
):
|
195 |
+
video_total_frames = int(video_duration_seconds * video_fps)
|
196 |
+
if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.")
|
197 |
+
if int(fragment_duration_frames) > video_total_frames:
|
198 |
+
raise gr.Error(f"A 'Duração de Cada Fragmento' ({fragment_duration_frames} frames) não pode ser maior que a 'Duração da Geração Bruta' ({video_total_frames} frames).")
|
199 |
+
|
200 |
+
log_history = "\n--- FASE 3/4: Iniciando Produção (Eco + Déjà Vu)...\n"
|
201 |
+
yield {
|
202 |
+
production_log_output: log_history,
|
203 |
+
video_gallery_glitch: [],
|
204 |
+
prod_media_start_output: gr.update(value=None),
|
205 |
+
prod_media_mid_output: gr.update(value=None, visible=False),
|
206 |
+
prod_media_end_output: gr.update(value=None),
|
207 |
+
}
|
208 |
+
|
209 |
+
seed = int(time.time())
|
210 |
+
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
211 |
+
try:
|
212 |
+
pipeline_instance.to(target_device)
|
213 |
+
video_fragments, story_history = [], ""; kinetic_memory_path = None
|
214 |
+
with Image.open(keyframe_images_state[1]) as img: width, height = img.size
|
215 |
+
|
216 |
+
num_transitions = len(keyframe_images_state) - 2
|
217 |
+
for i in range(num_transitions):
|
218 |
+
fragment_num = i + 1
|
219 |
+
progress(i / num_transitions, desc=f"Preparando Fragmento {fragment_num}...")
|
220 |
+
log_history += f"\n--- FRAGMENTO {fragment_num}/{num_transitions} ---\n"
|
221 |
+
|
222 |
+
if i == 0:
|
223 |
+
start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2]
|
224 |
+
dest_scene_desc = scene_storyboard[1]
|
225 |
+
log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
226 |
+
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
|
227 |
+
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, int(video_total_frames), 1.0)]
|
228 |
+
|
229 |
+
yield {
|
230 |
+
production_log_output: gr.update(value=log_history),
|
231 |
+
prod_media_start_output: gr.update(value=start_path),
|
232 |
+
prod_media_mid_output: gr.update(value=None, visible=False),
|
233 |
+
prod_media_end_output: gr.update(value=destination_path),
|
234 |
+
}
|
235 |
+
else:
|
236 |
+
memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2]
|
237 |
+
path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1]
|
238 |
+
log_history += f" - Memória Cinética (Vídeo): {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
239 |
+
|
240 |
+
mid_cond_frame_calculated = int(video_total_frames - fragment_duration_frames + eco_video_frames)
|
241 |
+
log_history += f" - Frame de Condicionamento do 'Caminho' calculado: {mid_cond_frame_calculated}\n"
|
242 |
+
|
243 |
+
current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc)
|
244 |
+
conditioning_items_data = [(memory_path, 0, 1.0), (path_path, mid_cond_frame_calculated, mid_cond_strength), (destination_path, int(video_total_frames), 1.0)]
|
245 |
+
|
246 |
+
yield {
|
247 |
+
production_log_output: gr.update(value=log_history),
|
248 |
+
prod_media_start_output: gr.update(value=memory_path),
|
249 |
+
prod_media_mid_output: gr.update(value=path_path, visible=True),
|
250 |
+
prod_media_end_output: gr.update(value=destination_path),
|
251 |
+
}
|
252 |
+
|
253 |
+
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}"
|
254 |
+
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history}
|
255 |
+
|
256 |
+
progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}...")
|
257 |
+
full_fragment_path, actual_frames_generated = run_ltx_animation(
|
258 |
+
current_fragment_index=fragment_num, motion_prompt=current_motion_prompt,
|
259 |
+
conditioning_items_data=conditioning_items_data, width=width, height=height,
|
260 |
+
seed=seed, cfg=cfg, progress=progress,
|
261 |
+
video_total_frames=video_total_frames, video_fps=video_fps,
|
262 |
+
use_attention_slicing=use_attention_slicing, num_inference_steps=num_inference_steps
|
263 |
+
)
|
264 |
+
|
265 |
+
log_history += f" - LOG: Gerei o fragmento_{fragment_num} bruto com {actual_frames_generated} frames.\n"
|
266 |
+
yield {production_log_output: log_history}
|
267 |
+
|
268 |
+
trimmed_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4")
|
269 |
+
trim_video_to_frames(full_fragment_path, trimmed_fragment_path, int(fragment_duration_frames))
|
270 |
+
|
271 |
+
log_history += f" - LOG: Reduzi o fragmento_{fragment_num} para {int(fragment_duration_frames)} frames.\n"
|
272 |
+
yield {production_log_output: log_history}
|
273 |
+
|
274 |
+
is_last_fragment = (i == num_transitions - 1)
|
275 |
+
if not is_last_fragment:
|
276 |
+
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.mp4")
|
277 |
+
kinetic_memory_path = extract_last_n_frames_as_video(trimmed_fragment_path, eco_output_path, int(eco_video_frames))
|
278 |
+
log_history += f" - LOG: Gerei o eco com {int(eco_video_frames)} frames a partir do final do fragmento reduzido.\n"
|
279 |
+
log_history += f" - Novo Eco Cinético (Vídeo) criado: {os.path.basename(kinetic_memory_path)}\n"
|
280 |
+
else:
|
281 |
+
log_history += f" - Este é o último fragmento, não é necessário gerar um eco.\n"
|
282 |
+
|
283 |
+
video_fragments.append(trimmed_fragment_path)
|
284 |
+
yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
|
285 |
+
|
286 |
+
progress(1.0, desc="Produção Concluída.")
|
287 |
+
log_history += "\nProdução de todos os fragmentos concluída.\n"
|
288 |
+
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
|
289 |
+
finally:
|
290 |
+
pipeline_instance.to('cpu')
|
291 |
+
gc.collect()
|
292 |
+
torch.cuda.empty_cache()
|
293 |
+
|
294 |
+
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
|
295 |
+
if not image_path: return None
|
296 |
+
try:
|
297 |
+
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
|
298 |
+
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
|
299 |
+
return output_path
|
300 |
+
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
|
301 |
+
|
302 |
+
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
|
303 |
+
if media_path.lower().endswith(('.mp4', '.mov', '.avi')):
|
304 |
+
with imageio.get_reader(media_path) as reader:
|
305 |
+
first_frame_np = reader.get_data(0)
|
306 |
+
temp_img_path = os.path.join(WORKSPACE_DIR, f"temp_frame_from_{os.path.basename(media_path)}.png")
|
307 |
+
Image.fromarray(first_frame_np).save(temp_img_path)
|
308 |
+
return load_image_to_tensor_with_resize_and_crop(temp_img_path, height, width)
|
309 |
+
else:
|
310 |
+
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
311 |
+
|
312 |
+
def run_ltx_animation(
|
313 |
+
current_fragment_index, motion_prompt, conditioning_items_data,
|
314 |
+
width, height, seed, cfg, progress,
|
315 |
+
video_total_frames, video_fps, use_attention_slicing, num_inference_steps
|
316 |
+
):
|
317 |
+
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
|
318 |
+
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4")
|
319 |
+
target_device = pipeline_instance.device # A pipeline já estará no dispositivo correto (cuda)
|
320 |
+
try:
|
321 |
+
if use_attention_slicing: pipeline_instance.enable_attention_slicing()
|
322 |
+
|
323 |
+
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
|
324 |
+
|
325 |
+
actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1)
|
326 |
+
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
327 |
+
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
328 |
+
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
|
329 |
+
|
330 |
+
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
331 |
+
first_pass_config['num_inference_steps'] = int(num_inference_steps)
|
332 |
+
|
333 |
+
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)}
|
334 |
+
|
335 |
+
result_tensor = pipeline_instance(**kwargs).images
|
336 |
+
|
337 |
+
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
|
338 |
+
|
339 |
+
cropped_tensor = result_tensor[:, :, :actual_num_frames, pad_t:slice_h, pad_l:slice_w]
|
340 |
+
video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
341 |
+
|
342 |
+
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer:
|
343 |
+
for i, frame in enumerate(video_np): writer.append_data(frame)
|
344 |
+
return output_path, actual_num_frames
|
345 |
+
finally:
|
346 |
+
if use_attention_slicing: pipeline_instance.disable_attention_slicing()
|
347 |
+
# Não movemos a pipeline para a CPU aqui; isso é feito no final da função `run_video_production`
|
348 |
+
|
349 |
+
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
|
350 |
+
try:
|
351 |
+
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
|
352 |
+
return output_path
|
353 |
+
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
|
354 |
+
|
355 |
+
def extract_last_n_frames_as_video(input_path: str, output_path: str, n_frames: int) -> str:
|
356 |
+
try:
|
357 |
+
cmd_probe = f"ffprobe -v error -select_streams v:0 -count_frames -show_entries stream=nb_read_frames -of default=nokey=1:noprint_wrappers=1 \"{input_path}\""
|
358 |
+
result = subprocess.run(cmd_probe, shell=True, check=True, text=True, capture_output=True)
|
359 |
+
total_frames = int(result.stdout.strip())
|
360 |
+
|
361 |
+
if n_frames >= total_frames:
|
362 |
+
shutil.copyfile(input_path, output_path)
|
363 |
+
return output_path
|
364 |
+
|
365 |
+
start_frame = total_frames - n_frames
|
366 |
+
cmd_ffmpeg = f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='gte(n,{start_frame})'\" -vframes {n_frames} -an \"{output_path}\""
|
367 |
+
subprocess.run(cmd_ffmpeg, shell=True, check=True, text=True)
|
368 |
+
return output_path
|
369 |
+
except (subprocess.CalledProcessError, ValueError) as e:
|
370 |
+
raise gr.Error(f"FFmpeg falhou ao extrair os últimos {n_frames} frames: {getattr(e, 'stderr', str(e))}")
|
371 |
+
|
372 |
+
def concatenate_and_trim_masterpiece(fragment_paths: list, fragment_duration_frames: int, eco_video_frames: int, progress=gr.Progress()):
|
373 |
+
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
|
374 |
+
progress(0.1, desc="Preparando fragmentos para montagem final...");
|
375 |
+
|
376 |
+
try:
|
377 |
+
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt")
|
378 |
+
final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
|
379 |
+
temp_files_for_concat = []
|
380 |
+
|
381 |
+
final_clip_len = int(fragment_duration_frames - eco_video_frames)
|
382 |
+
|
383 |
+
for i, p in enumerate(fragment_paths):
|
384 |
+
if i == len(fragment_paths) - 1:
|
385 |
+
temp_files_for_concat.append(os.path.abspath(p))
|
386 |
+
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Mantendo último fragmento: {os.path.basename(p)}")
|
387 |
+
else:
|
388 |
+
temp_path = os.path.join(WORKSPACE_DIR, f"temp_concat_{i}.mp4")
|
389 |
+
progress(0.1 + (i / len(fragment_paths)) * 0.8, desc=f"Cortando {os.path.basename(p)} para {final_clip_len} frames")
|
390 |
+
trim_video_to_frames(p, temp_path, final_clip_len)
|
391 |
+
temp_files_for_concat.append(temp_path)
|
392 |
+
|
393 |
+
progress(0.9, desc="Concatenando clipes...")
|
394 |
+
with open(list_file_path, "w") as f:
|
395 |
+
for p_temp in temp_files_for_concat:
|
396 |
+
f.write(f"file '{p_temp}'\n")
|
397 |
+
|
398 |
+
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
|
399 |
+
progress(1.0, desc="Montagem concluída!")
|
400 |
+
return final_output_path
|
401 |
+
except subprocess.CalledProcessError as e:
|
402 |
+
raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
|
403 |
+
|
404 |
+
# --- Ato 5: A Interface com o Mundo (UI) ---
|
405 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
406 |
+
gr.Markdown("# NOVIM-6.1 (Painel de Controle do Diretor)\n*By Carlex & Gemini & DreamO - Versão HF Spaces*")
|
407 |
+
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
408 |
+
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
|
409 |
+
|
410 |
+
scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
|
411 |
+
prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
|
412 |
+
|
413 |
+
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
|
414 |
+
with gr.Row():
|
415 |
+
with gr.Column(scale=1):
|
416 |
+
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
417 |
+
num_fragments_input = gr.Slider(2, 5, 4, step=1, label="Número de Atos (Keyframes)")
|
418 |
+
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
|
419 |
+
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
|
420 |
+
with gr.Column(scale=2): storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
|
421 |
+
|
422 |
+
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
|
423 |
+
with gr.Row():
|
424 |
+
with gr.Column(scale=2):
|
425 |
+
gr.Markdown("Forneça referências para guiar a IA. A Principal é obrigatória. A Secundária é opcional (ex: para estilo ou uma segunda pessoa).")
|
426 |
+
with gr.Row():
|
427 |
+
with gr.Column():
|
428 |
+
ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath")
|
429 |
+
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal")
|
430 |
+
with gr.Column():
|
431 |
+
ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath")
|
432 |
+
ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária")
|
433 |
+
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
|
434 |
+
with gr.Column(scale=1):
|
435 |
+
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=15, interactive=False)
|
436 |
+
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
|
437 |
+
|
438 |
+
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
|
439 |
+
with gr.Row():
|
440 |
+
with gr.Column(scale=1):
|
441 |
+
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
|
442 |
+
with gr.Accordion("Controles Avançados de Timing e Performance", open=False):
|
443 |
+
video_duration_slider = gr.Slider(label="Duração da Geração Bruta (segundos)", minimum=2.0, maximum=10.0, value=6.0, step=0.5)
|
444 |
+
video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=30, value=30, step=1)
|
445 |
+
num_inference_steps_slider = gr.Slider(label="Etapas de Inferência", minimum=10, maximum=50, value=30, step=1)
|
446 |
+
slicing_checkbox = gr.Checkbox(label="Usar Attention Slicing (Economiza VRAM)", value=True)
|
447 |
+
gr.Markdown("---"); gr.Markdown("#### Controles de Duração (Arquitetura Eco + Déjà Vu)")
|
448 |
+
fragment_duration_slider = gr.Slider(label="Duração de Cada Fragmento (Frames)", minimum=30, maximum=300, value=90, step=1)
|
449 |
+
eco_frames_slider = gr.Slider(label="Tamanho do Eco Cinético (Frames)", minimum=4, maximum=48, value=8, step=1)
|
450 |
+
mid_cond_strength_slider = gr.Slider(label="Força do 'Caminho'", minimum=0.1, maximum=1.0, value=0.5, step=0.05)
|
451 |
+
gr.Markdown(
|
452 |
+
"""
|
453 |
+
**Instruções (Nova Arquitetura):**
|
454 |
+
- **Duração da Geração Bruta:** Tempo total que a IA tem para criar a transição. Deve ser MAIOR que a Duração do Fragmento.
|
455 |
+
- **Duração de Cada Fragmento:** O comprimento final de cada clipe de vídeo que será gerado.
|
456 |
+
- **Tamanho do Eco Cinético:** Quantos frames do *final* de um fragmento serão passados para o próximo para garantir continuidade.
|
457 |
+
- **Força do Caminho:** Define o quão forte a imagem-chave intermediária ('Caminho') influencia a transição.
|
458 |
+
"""
|
459 |
+
)
|
460 |
+
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
|
461 |
+
with gr.Accordion("Visualização das Mídias de Condicionamento (Ao Vivo)", open=True):
|
462 |
+
with gr.Row():
|
463 |
+
prod_media_start_output = gr.Video(label="Mídia Inicial (Eco/K1)", interactive=False)
|
464 |
+
prod_media_mid_output = gr.Image(label="Mídia do Caminho (K_i-1)", interactive=False, visible=False)
|
465 |
+
prod_media_end_output = gr.Image(label="Mídia de Destino (K_i)", interactive=False)
|
466 |
+
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
|
467 |
+
with gr.Column(scale=1): video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados (Versões Cortadas)", object_fit="contain", height="auto", type="video")
|
468 |
+
|
469 |
+
fragment_duration_state = gr.State()
|
470 |
+
eco_frames_state = gr.State()
|
471 |
+
|
472 |
+
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
|
473 |
+
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
|
474 |
+
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
|
475 |
+
|
476 |
+
gr.Markdown(
|
477 |
+
"""
|
478 |
+
---
|
479 |
+
### A Arquitetura: Eco + Déjà Vu
|
480 |
+
A geração começa com um "Big Bang" entre os dois primeiros keyframes. A partir daí, a mágica acontece.
|
481 |
+
* **O Eco (A Memória Física):** No final de cada cena, os últimos frames são capturados e salvos como um pequeno vídeo, o `Eco`. Ele carrega a "energia cinética" do movimento, iluminação e atmosfera da cena que acabou.
|
482 |
+
* **O Déjà Vu (A Memória Conceitual):** Para criar a próxima cena, o Cineasta de IA (Gemini) assiste ao `Eco`, olha para o keyframe do "caminho" e o keyframe do "destino". Com essa visão tripla, ele tem um "déjà vu", uma memória do que acabou de acontecer que o inspira a escrever uma instrução de câmera precisa para conectar o passado ao futuro de forma fluida e coerente.
|
483 |
+
"""
|
484 |
+
)
|
485 |
+
|
486 |
+
# --- Ato 6: A Regência (Lógica de Conexão dos Botões) ---
|
487 |
+
def process_and_update_storyboard(num_fragments, prompt, image_path):
|
488 |
+
processed_path = process_image_to_square(image_path)
|
489 |
+
if not processed_path: raise gr.Error("A imagem de referência é inválida ou não foi fornecida.")
|
490 |
+
storyboard = run_storyboard_generation(num_fragments, prompt, processed_path)
|
491 |
+
return storyboard, prompt, processed_path
|
492 |
+
|
493 |
+
director_button.click(
|
494 |
+
fn=process_and_update_storyboard,
|
495 |
+
inputs=[num_fragments_input, prompt_input, image_input],
|
496 |
+
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state]
|
497 |
+
).success(
|
498 |
+
fn=lambda s, p: (s, p),
|
499 |
+
inputs=[scene_storyboard_state, processed_ref_path_state],
|
500 |
+
outputs=[storyboard_to_show, ref1_image]
|
501 |
+
)
|
502 |
+
|
503 |
+
@photographer_button.click(
|
504 |
+
inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task],
|
505 |
+
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
|
506 |
+
)
|
507 |
+
def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()):
|
508 |
+
ref_data = [
|
509 |
+
{'image': ref1_img, 'task': ref1_tsk},
|
510 |
+
{'image': ref2_img, 'task': ref2_tsk}
|
511 |
+
]
|
512 |
+
# Esta chamada agora invoca a função decorada com @spaces.GPU
|
513 |
+
yield from run_keyframe_generation(storyboard, ref_data, progress)
|
514 |
+
|
515 |
+
animator_button.click(
|
516 |
+
fn=lambda frag_dur, eco_dur: (frag_dur, eco_dur),
|
517 |
+
inputs=[fragment_duration_slider, eco_frames_slider],
|
518 |
+
outputs=[fragment_duration_state, eco_frames_state]
|
519 |
+
).then(
|
520 |
+
fn=run_video_production, # Esta função é decorada com @spaces.GPU
|
521 |
+
inputs=[
|
522 |
+
video_duration_slider, video_fps_slider, eco_frames_slider, slicing_checkbox,
|
523 |
+
fragment_duration_slider, mid_cond_strength_slider,
|
524 |
+
num_inference_steps_slider,
|
525 |
+
prompt_geral_state, keyframe_images_state, scene_storyboard_state, cfg_slider
|
526 |
+
],
|
527 |
+
outputs=[
|
528 |
+
production_log_output, video_gallery_glitch, fragment_list_state,
|
529 |
+
prod_media_start_output, prod_media_mid_output, prod_media_end_output
|
530 |
+
]
|
531 |
+
)
|
532 |
+
|
533 |
+
editor_button.click(
|
534 |
+
fn=concatenate_and_trim_masterpiece,
|
535 |
+
inputs=[fragment_list_state, fragment_duration_state, eco_frames_state],
|
536 |
+
outputs=[final_video_output]
|
537 |
+
)
|
538 |
+
|
539 |
+
if __name__ == "__main__":
|
540 |
+
demo.queue().launch(server_name="0.0.0.0", share=True)
|