Update dreamo_helpers.py
Browse files- dreamo_helpers.py +37 -29
dreamo_helpers.py
CHANGED
@@ -62,38 +62,46 @@ class Generator:
|
|
62 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
63 |
|
64 |
@torch.inference_mode()
|
65 |
-
# <<<<<
|
66 |
def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
|
67 |
-
|
68 |
-
|
69 |
-
for idx, item in enumerate(reference_items):
|
70 |
-
ref_image_np = item.get('image_np')
|
71 |
-
ref_task = item.get('task')
|
72 |
-
|
73 |
-
if ref_image_np is not None:
|
74 |
-
if ref_task == "id":
|
75 |
-
ref_image = self.get_align_face(ref_image_np)
|
76 |
-
elif ref_task != "style":
|
77 |
-
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
|
78 |
-
else: # Style usa a imagem original
|
79 |
-
ref_image = ref_image_np
|
80 |
|
81 |
-
|
82 |
-
|
|
|
|
|
|
|
83 |
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
@torch.no_grad()
|
99 |
def get_align_face(self, img):
|
|
|
62 |
if torch.cuda.is_available(): torch.cuda.empty_cache()
|
63 |
|
64 |
@torch.inference_mode()
|
65 |
+
# <<<<< CORREÇÃO IMPLEMENTADA: Gerenciamento de GPU atômico por chamada >>>>>
|
66 |
def generate_image_with_gpu_management(self, reference_items, prompt, width, height):
|
67 |
+
try:
|
68 |
+
self.to_gpu() # Move os modelos para a GPU no início de CADA chamada
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
69 |
|
70 |
+
ref_conds = []
|
71 |
+
|
72 |
+
for idx, item in enumerate(reference_items):
|
73 |
+
ref_image_np = item.get('image_np')
|
74 |
+
ref_task = item.get('task')
|
75 |
|
76 |
+
if ref_image_np is not None:
|
77 |
+
if ref_task == "id":
|
78 |
+
ref_image = self.get_align_face(ref_image_np)
|
79 |
+
elif ref_task != "style":
|
80 |
+
ref_image = self.bg_rm_model.inference(Image.fromarray(ref_image_np))
|
81 |
+
else: # Style usa a imagem original
|
82 |
+
ref_image = ref_image_np
|
83 |
+
|
84 |
+
ref_image_tensor = img2tensor(np.array(ref_image), bgr2rgb=False).unsqueeze(0) / 255.0
|
85 |
+
ref_image_tensor = (2 * ref_image_tensor - 1.0).to(self.gpu_device, dtype=torch.bfloat16)
|
86 |
+
|
87 |
+
# O modelo DreamO espera o índice começando em 1
|
88 |
+
ref_conds.append({'img': ref_image_tensor, 'task': ref_task, 'idx': idx + 1})
|
89 |
+
|
90 |
+
image = self.dreamo_pipeline(
|
91 |
+
prompt=prompt,
|
92 |
+
width=width,
|
93 |
+
height=height,
|
94 |
+
num_inference_steps=12,
|
95 |
+
guidance_scale=4.5,
|
96 |
+
ref_conds=ref_conds,
|
97 |
+
generator=torch.Generator(device="cpu").manual_seed(42)
|
98 |
+
).images[0]
|
99 |
+
|
100 |
+
return image
|
101 |
+
|
102 |
+
finally:
|
103 |
+
self.to_cpu() # Garante que os modelos voltem para a CPU, mesmo se ocorrer um erro
|
104 |
+
|
105 |
|
106 |
@torch.no_grad()
|
107 |
def get_align_face(self, img):
|