Delete app.5.5.py
Browse files- app.5.5.py +0 -636
app.5.5.py
DELETED
@@ -1,636 +0,0 @@
|
|
1 |
-
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
|
2 |
-
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
3 |
-
#
|
4 |
-
# Contato:
|
5 |
-
# Carlos Rodrigues dos Santos
|
6 | |
7 |
-
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
8 |
-
#
|
9 |
-
# Repositórios e Projetos Relacionados:
|
10 |
-
# GitHub: https://github.com/carlex22/Aduc-sdr
|
11 |
-
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
|
12 |
-
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
|
13 |
-
#
|
14 |
-
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
|
15 |
-
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
|
16 |
-
# Free Software Foundation, seja a versão 3 da Licença, ou
|
17 |
-
# (a seu critério) qualquer versão posterior.
|
18 |
-
#
|
19 |
-
# Este programa é distribuído na esperança de que seja útil,
|
20 |
-
# mas SEM QUALQUER GARANTIA; sem mesmo a garantia implícita de
|
21 |
-
# COMERCIALIZAÇÃO ou ADEQUAÇÃO A UM DETERMINADO FIM. Consulte a
|
22 |
-
# Licença Pública Geral Affero da GNU para mais detalhes.
|
23 |
-
#
|
24 |
-
# Você deve ter recebido uma cópia da Licença Pública Geral Affero da GNU
|
25 |
-
# junto com este programa. Se não, veja <https://www.gnu.org/licenses/>.
|
26 |
-
|
27 |
-
# --- app.py (NOVINHO-5.2-DOCS: Otimização de Memória + Documentação Completa) ---
|
28 |
-
|
29 |
-
# --- Ato 1: A Convocação da Orquestra (Importações) ---
|
30 |
-
import gradio as gr
|
31 |
-
import torch
|
32 |
-
import os
|
33 |
-
import yaml
|
34 |
-
from PIL import Image, ImageOps, ExifTags
|
35 |
-
import shutil
|
36 |
-
import gc
|
37 |
-
import subprocess
|
38 |
-
import google.generativeai as genai
|
39 |
-
import numpy as np
|
40 |
-
import imageio
|
41 |
-
from pathlib import Path
|
42 |
-
import huggingface_hub
|
43 |
-
import json
|
44 |
-
import time
|
45 |
-
|
46 |
-
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
|
47 |
-
from dreamo_helpers import dreamo_generator_singleton
|
48 |
-
|
49 |
-
# --- Ato 2: A Preparação do Palco (Configurações) ---
|
50 |
-
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
51 |
-
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
52 |
-
|
53 |
-
LTX_REPO = "Lightricks/LTX-Video"
|
54 |
-
models_dir = "downloaded_models_gradio"
|
55 |
-
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
56 |
-
WORKSPACE_DIR = "aduc_workspace"
|
57 |
-
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
58 |
-
|
59 |
-
VIDEO_FPS = 24
|
60 |
-
VIDEO_DURATION_SECONDS = 8.0
|
61 |
-
VIDEO_TOTAL_FRAMES = int(VIDEO_DURATION_SECONDS * VIDEO_FPS)
|
62 |
-
TARGET_RESOLUTION = 420
|
63 |
-
|
64 |
-
print("Criando pipelines LTX na CPU (estado de repouso)...")
|
65 |
-
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
66 |
-
pipeline_instance = create_ltx_video_pipeline(
|
67 |
-
ckpt_path=distilled_model_actual_path,
|
68 |
-
precision=PIPELINE_CONFIG_YAML["precision"],
|
69 |
-
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
70 |
-
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
71 |
-
device='cpu'
|
72 |
-
)
|
73 |
-
print("Modelos LTX prontos (na CPU).")
|
74 |
-
|
75 |
-
|
76 |
-
# --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
|
77 |
-
# AVISO: A documentação abaixo descreve a lógica de cada função.
|
78 |
-
# NÃO APAGUE OU ALTERE ESTES COMENTÁRIOS SEM SOLICITAÇÃO EXPLÍCITA.
|
79 |
-
|
80 |
-
# --- Funções da ETAPA 1 (Roteiro) ---
|
81 |
-
|
82 |
-
def robust_json_parser(raw_text: str) -> dict:
|
83 |
-
"""
|
84 |
-
Analisa uma string de texto bruto para encontrar e decodificar o primeiro objeto JSON válido.
|
85 |
-
Esta função é crucial para lidar com as respostas das IAs, que podem incluir texto
|
86 |
-
conversacional antes ou depois do bloco JSON.
|
87 |
-
|
88 |
-
Args:
|
89 |
-
raw_text (str): A string de texto completa retornada pela IA.
|
90 |
-
|
91 |
-
Returns:
|
92 |
-
dict: Um dicionário Python representando o objeto JSON encontrado.
|
93 |
-
|
94 |
-
Raises:
|
95 |
-
ValueError: Se nenhum objeto JSON for encontrado ou se a decodificação falhar.
|
96 |
-
"""
|
97 |
-
try:
|
98 |
-
start_index = raw_text.find('{')
|
99 |
-
end_index = raw_text.rfind('}')
|
100 |
-
if start_index != -1 and end_index != -1 and end_index > start_index:
|
101 |
-
json_str = raw_text[start_index : end_index + 1]
|
102 |
-
return json.loads(json_str)
|
103 |
-
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
|
104 |
-
except json.JSONDecodeError as e:
|
105 |
-
raise ValueError(f"Falha ao decodificar JSON: {e}")
|
106 |
-
|
107 |
-
def extract_image_exif(image_path: str) -> str:
|
108 |
-
"""
|
109 |
-
Extrai metadados EXIF relevantes de um arquivo de imagem.
|
110 |
-
Foca em informações técnicas como modelo da câmera, lente e configurações de exposição.
|
111 |
-
|
112 |
-
Args:
|
113 |
-
image_path (str): O caminho para o arquivo de imagem.
|
114 |
-
|
115 |
-
Returns:
|
116 |
-
str: Uma string formatada contendo os metadados EXIF relevantes, ou uma mensagem
|
117 |
-
indicando que nenhum metadado foi encontrado ou lido.
|
118 |
-
"""
|
119 |
-
try:
|
120 |
-
img = Image.open(image_path); exif_data = img._getexif()
|
121 |
-
if not exif_data: return "No EXIF metadata found."
|
122 |
-
exif = { ExifTags.TAGS[k]: v for k, v in exif_data.items() if k in ExifTags.TAGS }
|
123 |
-
relevant_tags = ['DateTimeOriginal', 'Model', 'LensModel', 'FNumber', 'ExposureTime', 'ISOSpeedRatings', 'FocalLength']
|
124 |
-
metadata_str = ", ".join(f"{key}: {exif[key]}" for key in relevant_tags if key in exif)
|
125 |
-
return metadata_str if metadata_str else "No relevant EXIF metadata found."
|
126 |
-
except Exception: return "Could not read EXIF data."
|
127 |
-
|
128 |
-
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
|
129 |
-
"""
|
130 |
-
Orquestra a Etapa 1. Em uma única chamada à IA, combina a análise da imagem de referência
|
131 |
-
com o prompt do usuário para gerar um roteiro de cenas (storyboard).
|
132 |
-
|
133 |
-
Args:
|
134 |
-
num_fragments (int): O número de atos (cenas) a serem criados.
|
135 |
-
prompt (str): A "Ideia Geral" fornecida pelo usuário.
|
136 |
-
initial_image_path (str): O caminho para a imagem de referência inicial.
|
137 |
-
|
138 |
-
Returns:
|
139 |
-
list: Uma lista de strings, onde cada string é a descrição de um ato do roteiro.
|
140 |
-
"""
|
141 |
-
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
142 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
143 |
-
exif_metadata = extract_image_exif(initial_image_path)
|
144 |
-
prompt_file = "prompts/unified_storyboard_prompt.txt"
|
145 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
146 |
-
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata=exif_metadata)
|
147 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
148 |
-
model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(initial_image_path)
|
149 |
-
print("Gerando roteiro com análise de visão integrada...")
|
150 |
-
response = model.generate_content([director_prompt, img])
|
151 |
-
try:
|
152 |
-
storyboard_data = robust_json_parser(response.text)
|
153 |
-
storyboard = storyboard_data.get("scene_storyboard", [])
|
154 |
-
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
|
155 |
-
return storyboard
|
156 |
-
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou ao criar o roteiro: {e}. Resposta recebida: {response.text}")
|
157 |
-
|
158 |
-
|
159 |
-
# --- Funções da ETAPA 2 (Keyframes) ---
|
160 |
-
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
|
161 |
-
"""
|
162 |
-
Chama a IA "Diretor de Arte" para criar um prompt de imagem dinâmico.
|
163 |
-
A IA analisa a imagem anterior e a descrição da próxima cena para gerar um prompt
|
164 |
-
que guiará o "Pintor" (DreamO) na criação do próximo keyframe.
|
165 |
-
|
166 |
-
Args:
|
167 |
-
previous_image_path (str): Caminho para a imagem de referência mais recente.
|
168 |
-
target_scene_description (str): A descrição do ato do roteiro para a cena a ser criada.
|
169 |
-
|
170 |
-
Returns:
|
171 |
-
str: O prompt de imagem gerado.
|
172 |
-
"""
|
173 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
174 |
-
prompt_file = "prompts/img2img_evolution_prompt.txt"
|
175 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
176 |
-
director_prompt = template.format(target_scene_description=target_scene_description)
|
177 |
-
model = genai.GenerativeModel('gemini-2.0-flash'); img = Image.open(previous_image_path)
|
178 |
-
response = model.generate_content([director_prompt, "Previous Image:", img])
|
179 |
-
return response.text.strip().replace("\"", "")
|
180 |
-
|
181 |
-
def run_keyframe_generation(storyboard, initial_ref_image_path, sequential_ref_task, *additional_refs_and_tasks, progress=gr.Progress()):
|
182 |
-
"""
|
183 |
-
Orquestra a Etapa 2. Gera a sequência de imagens-chave (keyframes) em um loop.
|
184 |
-
Combina referências estáticas (fornecidas pelo usuário) com referências dinâmicas
|
185 |
-
(os últimos keyframes gerados) para manter a consistência.
|
186 |
-
|
187 |
-
Args:
|
188 |
-
storyboard (list): A lista de atos do roteiro.
|
189 |
-
initial_ref_image_path (str): Caminho para a imagem de referência inicial processada.
|
190 |
-
sequential_ref_task (str): A tarefa de referência para a cadeia dinâmica de keyframes.
|
191 |
-
*additional_refs_and_tasks: Tupla de imagens e tarefas de referência adicionais.
|
192 |
-
progress (gr.Progress): Objeto do Gradio para atualizar a barra de progresso.
|
193 |
-
|
194 |
-
Yields:
|
195 |
-
dict: Atualizações para a UI (log, galeria) durante a geração.
|
196 |
-
|
197 |
-
Returns:
|
198 |
-
dict: O estado final dos componentes da UI e as listas de keyframes.
|
199 |
-
"""
|
200 |
-
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
|
201 |
-
if not initial_ref_image_path: raise gr.Error("A imagem de referência principal é obrigatória.")
|
202 |
-
log_history = ""; generated_images_for_gallery = []
|
203 |
-
|
204 |
-
# Processar as referências estáticas fornecidas pelo usuário na UI
|
205 |
-
base_reference_items = []
|
206 |
-
num_pairs = len(additional_refs_and_tasks) // 2
|
207 |
-
for i in range(num_pairs):
|
208 |
-
img_path = additional_refs_and_tasks[i * 2]
|
209 |
-
task = additional_refs_and_tasks[i * 2 + 1]
|
210 |
-
if img_path: # Apenas processar se o usuário inseriu uma imagem
|
211 |
-
base_reference_items.append({'image_np': np.array(Image.open(img_path).convert("RGB")), 'task': task})
|
212 |
-
|
213 |
-
try:
|
214 |
-
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
|
215 |
-
dreamo_generator_singleton.to_gpu()
|
216 |
-
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
|
217 |
-
keyframe_paths, current_ref_image_path = [initial_ref_image_path], initial_ref_image_path
|
218 |
-
|
219 |
-
for i, scene_description in enumerate(storyboard):
|
220 |
-
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
|
221 |
-
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
|
222 |
-
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
|
223 |
-
|
224 |
-
# Criar as referências dinâmicas (últimos 3 keyframes gerados)
|
225 |
-
recent_references_paths = keyframe_paths[-3:]
|
226 |
-
sequential_reference_items = [{'image_np': np.array(Image.open(ref_path).convert("RGB")), 'task': sequential_ref_task} for ref_path in recent_references_paths]
|
227 |
-
|
228 |
-
# Combinar referências estáticas e dinâmicas
|
229 |
-
all_reference_items = base_reference_items + sequential_reference_items
|
230 |
-
|
231 |
-
log_history += f" - Roteiro: '{scene_description}'\n"
|
232 |
-
log_history += f" - Usando {len(base_reference_items)} refs fixas + {len(sequential_reference_items)} refs sequenciais ({[os.path.basename(p) for p in recent_references_paths]}).\n"
|
233 |
-
log_history += f" - Prompt do D.A.: \"{dreamo_prompt}\"\n"
|
234 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
|
235 |
-
|
236 |
-
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
|
237 |
-
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=all_reference_items, prompt=dreamo_prompt, width=width, height=height)
|
238 |
-
image.save(output_path)
|
239 |
-
keyframe_paths.append(output_path); generated_images_for_gallery.append(output_path); current_ref_image_path = output_path
|
240 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery)}
|
241 |
-
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
|
242 |
-
finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache()
|
243 |
-
|
244 |
-
log_history += "\nPintura de todos os keyframes concluída.\n"
|
245 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_gallery_output: gr.update(value=generated_images_for_gallery), keyframe_images_state: keyframe_paths}
|
246 |
-
|
247 |
-
|
248 |
-
# --- Funções da ETAPA 3 (Produção de Vídeo) ---
|
249 |
-
def get_initial_motion_prompt(user_prompt: str, start_image_path: str, destination_image_path: str, dest_scene_desc: str):
|
250 |
-
"""
|
251 |
-
Gera o prompt de movimento para o primeiro fragmento de vídeo ("Big Bang").
|
252 |
-
Este é um caso especial que lida com uma transição simples de (Início -> Fim).
|
253 |
-
|
254 |
-
Args:
|
255 |
-
user_prompt (str): A ideia geral para dar contexto.
|
256 |
-
start_image_path (str): Caminho para o primeiro keyframe gerado (K_1).
|
257 |
-
destination_image_path (str): Caminho para o segundo keyframe gerado (K_2).
|
258 |
-
dest_scene_desc (str): A descrição do roteiro para a cena de destino (Ato 2).
|
259 |
-
|
260 |
-
Returns:
|
261 |
-
str: O prompt de movimento gerado para a transição inicial.
|
262 |
-
"""
|
263 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
264 |
-
try:
|
265 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
266 |
-
model = genai.GenerativeModel('gemini-2.0-flash')
|
267 |
-
prompt_file = "prompts/initial_motion_prompt.txt"
|
268 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
269 |
-
cinematographer_prompt = template.format(user_prompt=user_prompt, destination_scene_description=dest_scene_desc)
|
270 |
-
start_img, dest_img = Image.open(start_image_path), Image.open(destination_image_path)
|
271 |
-
model_contents = ["START Image:", start_img, "DESTINATION Image:", dest_img, cinematographer_prompt]
|
272 |
-
response = model.generate_content(model_contents)
|
273 |
-
return response.text.strip()
|
274 |
-
except Exception as e: raise gr.Error(f"O Cineasta de IA (Inicial) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
275 |
-
|
276 |
-
def get_dynamic_motion_prompt(user_prompt, story_history, memory_image_path, path_image_path, destination_image_path, path_scene_desc, dest_scene_desc):
|
277 |
-
"""
|
278 |
-
Gera o prompt de movimento para os fragmentos subsequentes, usando a lógica "Handoff Cinético".
|
279 |
-
A IA analisa 3 imagens (Memória, Caminho, Destino) para criar a instrução.
|
280 |
-
|
281 |
-
Args:
|
282 |
-
user_prompt (str): A ideia geral.
|
283 |
-
story_history (str): Um resumo dos prompts de movimento anteriores.
|
284 |
-
memory_image_path (str): O "Eco", último frame do fragmento anterior.
|
285 |
-
path_image_path (str): O "Caminho", keyframe que define o contexto da transição.
|
286 |
-
destination_image_path (str): O "Destino", keyframe que queremos alcançar.
|
287 |
-
path_scene_desc (str): Descrição do roteiro para o "Caminho".
|
288 |
-
dest_scene_desc (str): Descrição do roteiro para o "Destino".
|
289 |
-
|
290 |
-
Returns:
|
291 |
-
str: O prompt de movimento dinâmico gerado.
|
292 |
-
"""
|
293 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
294 |
-
try:
|
295 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
296 |
-
model = genai.GenerativeModel('gemini-2.0-flash')
|
297 |
-
prompt_file = "prompts/dynamic_motion_prompt.txt"
|
298 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
299 |
-
cinematographer_prompt = template.format(user_prompt=user_prompt, story_history=story_history, midpoint_scene_description=path_scene_desc, destination_scene_description=dest_scene_desc)
|
300 |
-
mem_img, path_img, dest_img = Image.open(memory_image_path), Image.open(path_image_path), Image.open(destination_image_path)
|
301 |
-
model_contents = ["START Image (Memory):", mem_img, "MIDPOINT Image (Path):", path_img, "DESTINATION Image (Destination):", dest_img, cinematographer_prompt]
|
302 |
-
response = model.generate_content(model_contents)
|
303 |
-
return response.text.strip()
|
304 |
-
except Exception as e: raise gr.Error(f"O Cineasta de IA (Dinâmico) falhou: {e}. Resposta: {getattr(e, 'text', 'No text available.')}")
|
305 |
-
|
306 |
-
def run_video_production(prompt_geral, keyframe_images_state, scene_storyboard, seed, cfg, cut_frames_value, progress=gr.Progress()):
|
307 |
-
"""
|
308 |
-
Orquestra a Etapa 3. Gera todos os fragmentos de vídeo em um loop, aplicando a lógica
|
309 |
-
"Big Bang" para o primeiro fragmento e "Handoff Cinético" para os demais.
|
310 |
-
|
311 |
-
Args:
|
312 |
-
prompt_geral (str): A ideia geral do usuário.
|
313 |
-
keyframe_images_state (list): A lista completa de keyframes [K_0, ..., K_n].
|
314 |
-
scene_storyboard (list): A lista de atos do roteiro.
|
315 |
-
seed (int): A semente para a geração de números aleatórios.
|
316 |
-
cfg (float): A escala de orientação do LTX.
|
317 |
-
cut_frames_value (int): O número de frames a manter em cada fragmento cortado.
|
318 |
-
progress (gr.Progress): Objeto do Gradio para a barra de progresso.
|
319 |
-
|
320 |
-
Yields:
|
321 |
-
dict: Atualizações para a UI durante o processo.
|
322 |
-
|
323 |
-
Returns:
|
324 |
-
dict: O estado final dos componentes da UI.
|
325 |
-
"""
|
326 |
-
if not keyframe_images_state or len(keyframe_images_state) < 3: raise gr.Error("Pinte pelo menos 2 keyframes para produzir uma transição.")
|
327 |
-
log_history = "\n--- FASE 3/4: Iniciando Produção com Lógica 'Big Bang'...\n"
|
328 |
-
yield {production_log_output: log_history, video_gallery_glitch: []}
|
329 |
-
|
330 |
-
MID_COND_FRAME, MID_COND_STRENGTH = 54, 0.5; END_COND_FRAME = VIDEO_TOTAL_FRAMES - 8
|
331 |
-
target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
332 |
-
try:
|
333 |
-
pipeline_instance.to(target_device)
|
334 |
-
video_fragments, story_history = [], ""; kinetic_memory_path = None
|
335 |
-
with Image.open(keyframe_images_state[1]) as img: width, height = img.size
|
336 |
-
|
337 |
-
num_transitions = len(keyframe_images_state) - 2
|
338 |
-
for i in range(num_transitions):
|
339 |
-
fragment_num = i + 1
|
340 |
-
progress(i / num_transitions, desc=f"Filmando Fragmento {fragment_num}/{num_transitions}")
|
341 |
-
log_history += f"\n--- FRAGMENTO {fragment_num} ---\n"
|
342 |
-
|
343 |
-
if i == 0:
|
344 |
-
start_path, destination_path = keyframe_images_state[1], keyframe_images_state[2]
|
345 |
-
dest_scene_desc = scene_storyboard[1]
|
346 |
-
log_history += f" - Início (Big Bang): {os.path.basename(start_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
347 |
-
current_motion_prompt = get_initial_motion_prompt(prompt_geral, start_path, destination_path, dest_scene_desc)
|
348 |
-
conditioning_items_data = [(start_path, int(0), 1.0), (destination_path, int(END_COND_FRAME), 1.0)]
|
349 |
-
else:
|
350 |
-
memory_path, path_path, destination_path = kinetic_memory_path, keyframe_images_state[i+1], keyframe_images_state[i+2]
|
351 |
-
path_scene_desc, dest_scene_desc = scene_storyboard[i], scene_storyboard[i+1]
|
352 |
-
log_history += f" - Memória Cinética: {os.path.basename(memory_path)}\n - Caminho: {os.path.basename(path_path)}\n - Destino: {os.path.basename(destination_path)}\n"
|
353 |
-
current_motion_prompt = get_dynamic_motion_prompt(prompt_geral, story_history, memory_path, path_path, destination_path, path_scene_desc, dest_scene_desc)
|
354 |
-
conditioning_items_data = [(memory_path, int(0), 1.0), (path_path, int(MID_COND_FRAME), MID_COND_STRENGTH), (destination_path, int(END_COND_FRAME), 1.0)]
|
355 |
-
|
356 |
-
story_history += f"\n- Ato {fragment_num + 1}: {current_motion_prompt}"
|
357 |
-
log_history += f" - Instrução do Cineasta: '{current_motion_prompt}'\n"; yield {production_log_output: log_history}
|
358 |
-
full_fragment_path, _ = run_ltx_animation(fragment_num, current_motion_prompt, conditioning_items_data, width, height, seed, cfg, progress)
|
359 |
-
|
360 |
-
is_last_fragment = (i == num_transitions - 1)
|
361 |
-
if is_last_fragment:
|
362 |
-
final_fragment_path = full_fragment_path
|
363 |
-
log_history += " - Último fragmento gerado, mantendo a duração total para um final limpo.\n"
|
364 |
-
else:
|
365 |
-
final_fragment_path = os.path.join(WORKSPACE_DIR, f"fragment_{fragment_num}_trimmed.mp4")
|
366 |
-
trim_video_to_frames(full_fragment_path, final_fragment_path, int(cut_frames_value))
|
367 |
-
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.png")
|
368 |
-
kinetic_memory_path = extract_last_frame_as_image(final_fragment_path, eco_output_path)
|
369 |
-
log_history += f" - Gerado e cortado. Novo Eco Dinâmico criado: {os.path.basename(kinetic_memory_path)}\n"
|
370 |
-
|
371 |
-
video_fragments.append(final_fragment_path)
|
372 |
-
yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
|
373 |
-
|
374 |
-
progress(1.0, desc="Produção Concluída.")
|
375 |
-
yield {production_log_output: log_history, video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
|
376 |
-
finally:
|
377 |
-
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
|
378 |
-
|
379 |
-
|
380 |
-
# --- Funções Utilitárias e de Pós-Produção ---
|
381 |
-
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
|
382 |
-
"""
|
383 |
-
Processa a imagem de referência inicial: converte para RGB e redimensiona para um
|
384 |
-
formato quadrado (TARGET_RESOLUTION x TARGET_RESOLUTION).
|
385 |
-
|
386 |
-
Args:
|
387 |
-
image_path (str): Caminho para a imagem original.
|
388 |
-
size (int): A dimensão do lado do quadrado final.
|
389 |
-
|
390 |
-
Returns:
|
391 |
-
str: O caminho para a imagem processada e salva.
|
392 |
-
"""
|
393 |
-
if not image_path: return None
|
394 |
-
try:
|
395 |
-
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
|
396 |
-
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
|
397 |
-
return output_path
|
398 |
-
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
|
399 |
-
|
400 |
-
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
|
401 |
-
"""
|
402 |
-
Carrega uma imagem e a converte para o formato de tensor esperado pelo LTX.
|
403 |
-
|
404 |
-
Args:
|
405 |
-
media_path (str): Caminho para o arquivo de imagem.
|
406 |
-
height (int): Altura do vídeo alvo.
|
407 |
-
width (int): Largura do vídeo alvo.
|
408 |
-
|
409 |
-
Returns:
|
410 |
-
torch.Tensor: O tensor da imagem, pronto para ser usado como condicionamento.
|
411 |
-
"""
|
412 |
-
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
413 |
-
|
414 |
-
def run_ltx_animation(current_fragment_index, motion_prompt, conditioning_items_data, width, height, seed, cfg, progress=gr.Progress()):
|
415 |
-
"""
|
416 |
-
Wrapper para a execução do pipeline do LTX. Gera um único fragmento de vídeo.
|
417 |
-
Ativa o 'attention slicing' para economizar VRAM durante a execução.
|
418 |
-
|
419 |
-
Args:
|
420 |
-
current_fragment_index (int): O número do fragmento atual (para a seed).
|
421 |
-
motion_prompt (str): O prompt de movimento do Cineasta de IA.
|
422 |
-
conditioning_items_data (list): Lista de tuplas para os itens de condicionamento.
|
423 |
-
width (int): Largura do vídeo.
|
424 |
-
height (int): Altura do vídeo.
|
425 |
-
seed (int): Semente de geração.
|
426 |
-
cfg (float): Escala de orientação.
|
427 |
-
progress (gr.Progress): Objeto do Gradio para a barra de progresso.
|
428 |
-
|
429 |
-
Returns:
|
430 |
-
tuple: (caminho_do_video_gerado, numero_de_frames_gerados)
|
431 |
-
"""
|
432 |
-
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
|
433 |
-
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = pipeline_instance.device
|
434 |
-
|
435 |
-
try:
|
436 |
-
pipeline_instance.enable_attention_slicing()
|
437 |
-
|
438 |
-
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
|
439 |
-
actual_num_frames = int(round((float(VIDEO_TOTAL_FRAMES) - 1.0) / 8.0) * 8 + 1)
|
440 |
-
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
441 |
-
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
442 |
-
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
|
443 |
-
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": VIDEO_FPS, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": PIPELINE_CONFIG_YAML.get("first_pass", {}).get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4}
|
444 |
-
result_tensor = pipeline_instance(**kwargs).images
|
445 |
-
|
446 |
-
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
|
447 |
-
cropped_tensor = result_tensor[:, :, :VIDEO_TOTAL_FRAMES, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
448 |
-
with imageio.get_writer(output_path, fps=VIDEO_FPS, codec='libx264', quality=8) as writer:
|
449 |
-
for i, frame in enumerate(video_np): writer.append_data(frame)
|
450 |
-
|
451 |
-
return output_path, actual_num_frames
|
452 |
-
finally:
|
453 |
-
pipeline_instance.disable_attention_slicing()
|
454 |
-
|
455 |
-
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
|
456 |
-
"""
|
457 |
-
Usa o FFmpeg para cortar um vídeo, mantendo apenas um número específico de frames iniciais.
|
458 |
-
Essencial para o "Corte Estratégico" do Handoff Cinético.
|
459 |
-
|
460 |
-
Args:
|
461 |
-
input_path (str): Caminho para o vídeo de entrada.
|
462 |
-
output_path (str): Caminho para salvar o vídeo cortado.
|
463 |
-
frames_to_keep (int): Número de frames a serem mantidos.
|
464 |
-
|
465 |
-
Returns:
|
466 |
-
str: O caminho para o vídeo cortado.
|
467 |
-
"""
|
468 |
-
try:
|
469 |
-
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
|
470 |
-
return output_path
|
471 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
|
472 |
-
|
473 |
-
def extract_last_frame_as_image(video_path: str, output_image_path: str) -> str:
|
474 |
-
"""
|
475 |
-
Usa o FFmpeg para extrair eficientemente o último frame de um vídeo.
|
476 |
-
Esta é a função que cria o "Eco" para o Handoff Cinético.
|
477 |
-
|
478 |
-
Args:
|
479 |
-
video_path (str): Caminho para o vídeo de entrada.
|
480 |
-
output_image_path (str): Caminho para salvar a imagem do frame extraído.
|
481 |
-
|
482 |
-
Returns:
|
483 |
-
str: O caminho para a imagem extraída.
|
484 |
-
"""
|
485 |
-
try:
|
486 |
-
subprocess.run(f"ffmpeg -y -v error -sseof -1 -i \"{video_path}\" -update 1 -q:v 1 \"{output_image_path}\"", shell=True, check=True, text=True)
|
487 |
-
return output_image_path
|
488 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao extrair último frame: {e.stderr}")
|
489 |
-
|
490 |
-
def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
|
491 |
-
"""
|
492 |
-
Orquestra a Etapa 4. Usa o FFmpeg para concatenar todos os fragmentos de vídeo gerados
|
493 |
-
em uma única obra-prima final.
|
494 |
-
|
495 |
-
Args:
|
496 |
-
fragment_paths (list): Uma lista dos caminhos para os fragmentos de vídeo.
|
497 |
-
progress (gr.Progress): Objeto do Gradio para a barra de progresso.
|
498 |
-
|
499 |
-
Returns:
|
500 |
-
str: O caminho para o vídeo final montado.
|
501 |
-
"""
|
502 |
-
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
|
503 |
-
progress(0.5, desc="Montando a obra-prima final...");
|
504 |
-
try:
|
505 |
-
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
|
506 |
-
with open(list_file_path, "w") as f:
|
507 |
-
for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n")
|
508 |
-
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
|
509 |
-
progress(1.0, desc="Montagem concluída!")
|
510 |
-
return final_output_path
|
511 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
|
512 |
-
|
513 |
-
# --- Ato 5: A Interface com o Mundo (UI) ---
|
514 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
515 |
-
gr.Markdown("# NOVINHO-5.2 (Otimização de Memória)\n*By Carlex & Gemini & DreamO*")
|
516 |
-
|
517 |
-
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
518 |
-
os.makedirs(WORKSPACE_DIR); Path("prompts").mkdir(exist_ok=True)
|
519 |
-
|
520 |
-
# State variables
|
521 |
-
scene_storyboard_state = gr.State([])
|
522 |
-
keyframe_images_state = gr.State([])
|
523 |
-
fragment_list_state = gr.State([])
|
524 |
-
prompt_geral_state = gr.State("")
|
525 |
-
processed_ref_path_state = gr.State("")
|
526 |
-
|
527 |
-
# UI Constants
|
528 |
-
MAX_ADDITIONAL_REFS = 4
|
529 |
-
|
530 |
-
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
|
531 |
-
with gr.Row():
|
532 |
-
with gr.Column(scale=1):
|
533 |
-
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
534 |
-
num_fragments_input = gr.Slider(2, 10, 4, step=1, label="Número de Atos (Keyframes)")
|
535 |
-
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
|
536 |
-
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
|
537 |
-
with gr.Column(scale=2):
|
538 |
-
storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado (em Inglês)")
|
539 |
-
|
540 |
-
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
|
541 |
-
with gr.Row():
|
542 |
-
with gr.Column(scale=2):
|
543 |
-
gr.Markdown("O Diretor de Arte (IA) gerará prompts dinamicamente. O Pintor usará as referências abaixo + as **3 últimas imagens** geradas para criar a próxima.")
|
544 |
-
with gr.Group():
|
545 |
-
ref1_image = gr.Image(label="Referência Principal (Automática da Etapa 1)", type="filepath", interactive=False)
|
546 |
-
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa das Referências em Cadeia")
|
547 |
-
|
548 |
-
# --- SEÇÃO DE REFERÊNCIAS ADICIONAIS (MODIFICADA) ---
|
549 |
-
additional_ref_images = []
|
550 |
-
additional_ref_tasks = []
|
551 |
-
with gr.Accordion("Referências Adicionais do Pintor (Opcional)", open=False):
|
552 |
-
with gr.Tabs():
|
553 |
-
for i in range(MAX_ADDITIONAL_REFS):
|
554 |
-
with gr.TabItem(f"Ref. Extra {i+1}"):
|
555 |
-
with gr.Column():
|
556 |
-
ref_img = gr.Image(label=f"Imagem de Referência Extra {i+1}", type="filepath", scale=2)
|
557 |
-
ref_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label=f"Tarefa da Ref. Extra {i+1}")
|
558 |
-
additional_ref_images.append(ref_img)
|
559 |
-
additional_ref_tasks.append(ref_task)
|
560 |
-
|
561 |
-
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
|
562 |
-
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=10, interactive=False)
|
563 |
-
with gr.Column(scale=1):
|
564 |
-
keyframe_gallery_output = gr.Gallery(label="Imagens-Chave Pintadas", object_fit="contain", height="auto", type="filepath")
|
565 |
-
|
566 |
-
|
567 |
-
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
|
568 |
-
with gr.Row():
|
569 |
-
with gr.Column(scale=1):
|
570 |
-
with gr.Row():
|
571 |
-
seed_number = gr.Number(42, label="Seed")
|
572 |
-
cfg_slider = gr.Slider(1.0, 10.0, 2.5, step=0.1, label="CFG")
|
573 |
-
cut_frames_slider = gr.Slider(label="Duração do Fragmento (Frames)", minimum=60, maximum=VIDEO_TOTAL_FRAMES, value=150, step=1)
|
574 |
-
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
|
575 |
-
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=15, interactive=False)
|
576 |
-
with gr.Column(scale=1):
|
577 |
-
video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video")
|
578 |
-
|
579 |
-
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (IA Editor)")
|
580 |
-
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
|
581 |
-
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
|
582 |
-
|
583 |
-
gr.Markdown(
|
584 |
-
"""
|
585 |
-
---
|
586 |
-
### A Arquitetura: Handoff Cinético & Big Bang
|
587 |
-
A geração começa com um "Big Bang": a primeira transição de vídeo é entre o **Keyframe 1 e o Keyframe 2**. A imagem de referência original é usada apenas para criar o primeiro keyframe e depois é descartada do processo de vídeo.
|
588 |
-
|
589 |
-
* **O Bastão (O `Eco`):** Após a primeira transição, o último frame do clipe cortado (o `Eco`) carrega a "energia cinética" da cena.
|
590 |
-
|
591 |
-
* **O Handoff (A Geração):** Os fragmentos seguintes começam a partir deste `Eco` dinâmico, herdando a "física" do movimento e da iluminação.
|
592 |
-
|
593 |
-
* **A Sincronização (Cineasta de IA):** Para cada Handoff, o Cineasta de IA (`Γ`) analisa o (`Eco`), o (`Keyframe` do caminho) e o (`Keyframe` do destino) para criar uma instrução de movimento precisa.
|
594 |
-
"""
|
595 |
-
)
|
596 |
-
|
597 |
-
# Event Handlers
|
598 |
-
director_button.click(
|
599 |
-
fn=run_storyboard_generation,
|
600 |
-
inputs=[num_fragments_input, prompt_input, image_input],
|
601 |
-
outputs=[scene_storyboard_state]
|
602 |
-
).success(
|
603 |
-
fn=lambda s, p: (s, p),
|
604 |
-
inputs=[scene_storyboard_state, prompt_input],
|
605 |
-
outputs=[storyboard_to_show, prompt_geral_state]
|
606 |
-
).success(
|
607 |
-
fn=process_image_to_square,
|
608 |
-
inputs=[image_input],
|
609 |
-
outputs=[processed_ref_path_state]
|
610 |
-
).success(
|
611 |
-
fn=lambda p: p,
|
612 |
-
inputs=[processed_ref_path_state],
|
613 |
-
outputs=[ref1_image]
|
614 |
-
)
|
615 |
-
|
616 |
-
# Atualizado para incluir as referências adicionais
|
617 |
-
photographer_button.click(
|
618 |
-
fn=run_keyframe_generation,
|
619 |
-
inputs=[scene_storyboard_state, ref1_image, ref1_task, *additional_ref_images, *additional_ref_tasks],
|
620 |
-
outputs=[keyframe_log_output, keyframe_gallery_output, keyframe_images_state]
|
621 |
-
)
|
622 |
-
|
623 |
-
animator_button.click(
|
624 |
-
fn=run_video_production,
|
625 |
-
inputs=[prompt_geral_state, keyframe_images_state, scene_storyboard_state, seed_number, cfg_slider, cut_frames_slider],
|
626 |
-
outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
|
627 |
-
)
|
628 |
-
|
629 |
-
editor_button.click(
|
630 |
-
fn=concatenate_and_trim_masterpiece,
|
631 |
-
inputs=[fragment_list_state],
|
632 |
-
outputs=[final_video_output]
|
633 |
-
)
|
634 |
-
|
635 |
-
if __name__ == "__main__":
|
636 |
-
demo.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|