Carlexx commited on
Commit
d83569c
·
verified ·
1 Parent(s): 414cdce

Delete app.5.4.py

Browse files
Files changed (1) hide show
  1. app.5.4.py +0 -356
app.5.4.py DELETED
@@ -1,356 +0,0 @@
1
- # Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
2
- # Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
3
- #
4
- # Contato:
5
- # Carlos Rodrigues dos Santos
6
7
- # Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
8
- #
9
- # Repositórios e Projetos Relacionados:
10
- # GitHub: https://github.com/carlex22/Aduc-sdr
11
- # Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
12
- # Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
13
- #
14
- # Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
15
- # sob os termos da Licença Pública Geral Affero da GNU como publicada pela
16
- # Free Software Foundation, seja a versão 3 da Licença, ou
17
- # (a seu critério) qualquer versão posterior.
18
-
19
- # --- app.py (NOVIM-5.5: O Fator Humano) ---
20
-
21
- # --- Ato 1: A Convocação da Orquestra (Importações) ---
22
- import gradio as gr
23
- import torch
24
- import os
25
- import yaml
26
- from PIL import Image, ImageOps, ExifTags
27
- import shutil
28
- import gc
29
- import subprocess
30
- import google.generativeai as genai
31
- import numpy as np
32
- import imageio
33
- from pathlib import Path
34
- import huggingface_hub
35
- import json
36
- import time
37
-
38
- from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
39
- from dreamo_helpers import dreamo_generator_singleton
40
-
41
- # --- Ato 2: A Preparação do Palco (Configurações) ---
42
- config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
43
- with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
44
-
45
- LTX_REPO = "Lightricks/LTX-Video"
46
- models_dir = "downloaded_models_gradio"
47
- Path(models_dir).mkdir(parents=True, exist_ok=True)
48
- WORKSPACE_DIR = "aduc_workspace"
49
- GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
50
-
51
- VIDEO_FPS = 24
52
- TARGET_RESOLUTION = 420
53
- MAX_KEYFRAMES_UI = 10 # Limite de abas de keyframe na UI
54
-
55
- print("Criando pipelines LTX na CPU (estado de repouso)...")
56
- distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
57
- pipeline_instance = create_ltx_video_pipeline(
58
- ckpt_path=distilled_model_actual_path,
59
- precision=PIPELINE_CONFIG_YAML["precision"],
60
- text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
61
- sampler=PIPELINE_CONFIG_YAML["sampler"],
62
- device='cpu'
63
- )
64
- print("Modelos LTX prontos (na CPU).")
65
-
66
-
67
- # --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
68
-
69
- def robust_json_parser(raw_text: str) -> dict:
70
- try:
71
- start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
72
- if start_index != -1 and end_index != -1 and end_index > start_index:
73
- json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str)
74
- else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
75
- except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
76
-
77
- def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
78
- if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
79
- if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
80
- prompt_file = "prompts/unified_storyboard_prompt.txt"
81
- with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
82
- director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata="")
83
- genai.configure(api_key=GEMINI_API_KEY)
84
- model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path)
85
- response = model.generate_content([director_prompt, img])
86
- try:
87
- storyboard_data = robust_json_parser(response.text)
88
- storyboard = storyboard_data.get("scene_storyboard", [])
89
- if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
90
- return storyboard
91
- except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou: {e}. Resposta: {response.text}")
92
-
93
- def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
94
- genai.configure(api_key=GEMINI_API_KEY)
95
- prompt_file = "prompts/img2img_evolution_prompt.txt"
96
- with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
97
- director_prompt = template.format(target_scene_description=target_scene_description)
98
- model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path)
99
- response = model.generate_content([director_prompt, "Previous Image:", img])
100
- return response.text.strip().replace("\"", "")
101
-
102
- def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()):
103
- if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
104
- initial_ref_image_path = ref_images_tasks[0]['image']
105
- if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.")
106
- log_history = ""; keyframe_paths = []
107
- try:
108
- pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
109
- dreamo_generator_singleton.to_gpu()
110
- with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
111
- current_ref_image_path = initial_ref_image_path
112
- for i, scene_description in enumerate(storyboard):
113
- progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
114
- log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
115
- dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
116
- reference_items = []
117
- for item in ref_images_tasks:
118
- if item['image'] and os.path.exists(item['image']):
119
- reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']})
120
- log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n"
121
- yield {keyframe_log_output: gr.update(value=log_history)}
122
- output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
123
- image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height)
124
- image.save(output_path)
125
- keyframe_paths.append(output_path); current_ref_image_path = output_path
126
- except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
127
- finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache()
128
- log_history += "\nPintura de todos os keyframes concluída.\n"
129
- yield {keyframe_log_output: gr.update(value=log_history), keyframe_images_state: keyframe_paths}
130
-
131
- def get_motion_prompt(user_prompt, start_path, end_path, scene_desc):
132
- return f"A smooth, cinematic transition from the start image towards the end image, focusing on: {scene_desc}"
133
-
134
- def run_video_production(
135
- video_duration_seconds, video_fps, end_cond_strength,
136
- prompt_geral, keyframe_paths_from_ui, scene_storyboard, cfg,
137
- progress=gr.Progress()
138
- ):
139
- valid_keyframes = [p for p in keyframe_paths_from_ui if p is not None and os.path.exists(p)]
140
- if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("São necessários pelo menos 2 keyframes válidos para produzir um vídeo.")
141
-
142
- log_history = "\n--- FASE 3: Iniciando Produção...\n"
143
- yield {production_log_output: log_history, video_gallery_glitch: []}
144
-
145
- video_total_frames = int(video_duration_seconds * video_fps)
146
- seed = int(time.time())
147
- try:
148
- pipeline_instance.to('cuda')
149
- video_fragments = []; kinetic_memory_path = valid_keyframes[0]
150
- with Image.open(kinetic_memory_path) as img: width, height = img.size
151
-
152
- for i in range(len(valid_keyframes) - 1):
153
- fragment_num = i + 1
154
- progress(i / (len(valid_keyframes) - 1), desc=f"Filmando Fragmento {fragment_num}")
155
-
156
- start_path = kinetic_memory_path
157
- destination_path = valid_keyframes[i+1]
158
-
159
- motion_prompt = get_motion_prompt(prompt_geral, start_path, destination_path, scene_storyboard[i])
160
-
161
- conditioning_items_data = [(start_path, 0, 1.0), (destination_path, video_total_frames - 1, end_cond_strength)]
162
-
163
- fragment_path, _ = run_ltx_animation(
164
- current_fragment_index=fragment_num, motion_prompt=motion_prompt,
165
- conditioning_items_data=conditioning_items_data, width=width, height=height,
166
- seed=seed, cfg=cfg, progress=progress,
167
- video_total_frames=video_total_frames, video_fps=video_fps, use_attention_slicing=True, num_inference_steps=30
168
- )
169
-
170
- video_fragments.append(fragment_path)
171
- eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.png")
172
- kinetic_memory_path = extract_last_frame_as_image(fragment_path, eco_output_path)
173
-
174
- log_history += f"Fragmento {fragment_num} concluído.\n"
175
- yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
176
-
177
- yield {production_log_output: log_history + "\nProdução concluída.", video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
178
- finally:
179
- pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
180
-
181
- def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
182
- if not image_path: return None
183
- try:
184
- img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
185
- output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
186
- return output_path
187
- except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
188
-
189
- def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
190
- return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
191
-
192
- def run_ltx_animation(
193
- current_fragment_index, motion_prompt, conditioning_items_data,
194
- width, height, seed, cfg, progress,
195
- video_total_frames, video_fps, use_attention_slicing, num_inference_steps
196
- ):
197
- progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
198
- output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
199
- try:
200
- if use_attention_slicing: pipeline_instance.enable_attention_slicing()
201
- conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
202
- actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1)
203
- padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
204
- padding_vals = calculate_padding(height, width, padded_h, padded_w)
205
- for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
206
-
207
- first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
208
- first_pass_config['num_inference_steps'] = int(num_inference_steps)
209
-
210
- kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)}
211
-
212
- result_tensor = pipeline_instance(**kwargs).images
213
-
214
- pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
215
- cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
216
- with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer:
217
- for i, frame in enumerate(video_np): writer.append_data(frame)
218
- return output_path, actual_num_frames
219
- finally:
220
- if use_attention_slicing: pipeline_instance.disable_attention_slicing()
221
-
222
- def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
223
- try:
224
- subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
225
- return output_path
226
- except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
227
-
228
- def extract_last_frame_as_image(video_path: str, output_image_path: str) -> str:
229
- try:
230
- subprocess.run(f"ffmpeg -y -v error -sseof -1 -i \"{video_path}\" -update 1 -q:v 1 \"{output_image_path}\"", shell=True, check=True, text=True)
231
- return output_image_path
232
- except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao extrair último frame: {e.stderr}")
233
-
234
- def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
235
- if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
236
- progress(0.5, desc="Montando a obra-prima final...");
237
- try:
238
- list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
239
- with open(list_file_path, "w") as f:
240
- for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n")
241
- subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
242
- progress(1.0, desc="Montagem concluída!")
243
- return final_output_path
244
- except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
245
-
246
- with gr.Blocks(theme=gr.themes.Soft()) as demo:
247
- gr.Markdown("# NOVIM-5.5 (O Fator Humano)\n*By Carlex & Gemini & DreamO*")
248
- if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
249
- os.makedirs(WORKSPACE_DIR)
250
-
251
- scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
252
- prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
253
-
254
- gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
255
- with gr.Row():
256
- with gr.Column(scale=1):
257
- prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
258
- num_fragments_input = gr.Slider(2, MAX_KEYFRAMES_UI, 4, step=1, label="Número de Atos (Keyframes)")
259
- image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
260
- director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
261
- with gr.Column(scale=2):
262
- storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
263
-
264
- gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
265
- with gr.Row():
266
- with gr.Column(scale=2):
267
- with gr.Row():
268
- ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath")
269
- ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal")
270
- with gr.Row():
271
- ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath")
272
- ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária")
273
- photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
274
- keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=10, interactive=False)
275
- with gr.Column(scale=1):
276
- gr.Markdown("### Painel de Edição de Keyframes")
277
- keyframe_ui_slots = []
278
- keyframe_ui_tabs_visibility = []
279
- with gr.Tabs() as keyframe_tabs:
280
- for i in range(MAX_KEYFRAMES_UI):
281
- with gr.TabItem(f"Keyframe {i+1}", visible=(i<2)) as keyframe_tab:
282
- keyframe_ui_slots.append(gr.Image(label=f"Conteúdo do Keyframe {i+1}", type="filepath", interactive=True))
283
- keyframe_ui_tabs_visibility.append(keyframe_tab)
284
-
285
- gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
286
- with gr.Row():
287
- with gr.Column(scale=1):
288
- cfg_slider = gr.Slider(1.0, 10.0, 7.5, step=0.1, label="CFG")
289
- end_cond_strength_slider = gr.Slider(label="Força de Convergência do Destino", minimum=0.1, maximum=1.0, value=1.0, step=0.05)
290
- with gr.Accordion("Controles Avançados de Timing", open=False):
291
- video_duration_slider = gr.Slider(label="Duração da Cena (segundos)", minimum=2.0, maximum=10.0, value=4.0, step=0.5)
292
- video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=36, value=VIDEO_FPS, step=1)
293
- animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
294
- production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
295
- with gr.Column(scale=1):
296
- video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video")
297
-
298
- gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
299
- editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
300
- final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
301
-
302
- def process_and_update_storyboard(num_fragments, prompt, image_path):
303
- processed_path = process_image_to_square(image_path)
304
- if not processed_path: raise gr.Error("A imagem de referência é inválida.")
305
- storyboard = run_storyboard_generation(num_fragments, prompt, processed_path)
306
- tab_updates = [gr.update(visible=(i < num_fragments)) for i in range(MAX_KEYFRAMES_UI)]
307
- return storyboard, prompt, processed_path, storyboard, processed_path, *tab_updates
308
-
309
- director_button.click(
310
- fn=process_and_update_storyboard,
311
- inputs=[num_fragments_input, prompt_input, image_input],
312
- outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state, storyboard_to_show, ref1_image] + keyframe_ui_tabs_visibility
313
- )
314
-
315
- def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()):
316
- ref_data = [{'image': ref1_img, 'task': ref1_tsk}, {'image': ref2_img, 'task': ref2_tsk}]
317
- final_update = {}
318
- for update in run_keyframe_generation(storyboard, ref_data, progress):
319
- final_update = update
320
- final_paths = final_update.get('keyframe_images_state', [])
321
- updates = [gr.update(value=final_paths[i] if i < len(final_paths) else None) for i in range(MAX_KEYFRAMES_UI)]
322
- return final_update.get('keyframe_log_output', ''), final_paths, *updates
323
-
324
- photographer_button.click(
325
- fn=run_keyframe_generation_wrapper,
326
- inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task],
327
- outputs=[keyframe_log_output, keyframe_images_state] + keyframe_ui_slots
328
- )
329
-
330
- # A lista de inputs para a produção de vídeo agora coleta os keyframes das abas
331
- video_prod_inputs = [
332
- video_duration_slider, video_fps_slider, end_cond_strength_slider,
333
- prompt_geral_state,
334
- scene_storyboard_state, cfg_slider
335
- ] + keyframe_ui_slots
336
-
337
- # A função wrapper é necessária para coletar os valores dos slots de keyframe
338
- def run_video_production_wrapper(duration, fps, strength, prompt, storyboard, cfg, *keyframes, progress=gr.Progress()):
339
- # Filtra os keyframes que não são None
340
- valid_keyframes = [k for k in keyframes if k]
341
- yield from run_video_production(duration, fps, strength, prompt, valid_keyframes, storyboard, cfg, progress)
342
-
343
- animator_button.click(
344
- fn=run_video_production_wrapper,
345
- inputs=video_prod_inputs,
346
- outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
347
- )
348
-
349
- editor_button.click(
350
- fn=concatenate_and_trim_masterpiece,
351
- inputs=[fragment_list_state],
352
- outputs=[final_video_output]
353
- )
354
-
355
- if __name__ == "__main__":
356
- demo.queue().launch(server_name="0.0.0.0", share=True)