Delete app.5.4.py
Browse files- app.5.4.py +0 -356
app.5.4.py
DELETED
@@ -1,356 +0,0 @@
|
|
1 |
-
# Euia-AducSdr: Uma implementação aberta e funcional da arquitetura ADUC-SDR para geração de vídeo coerente.
|
2 |
-
# Copyright (C) 4 de Agosto de 2025 Carlos Rodrigues dos Santos
|
3 |
-
#
|
4 |
-
# Contato:
|
5 |
-
# Carlos Rodrigues dos Santos
|
6 | |
7 |
-
# Rua Eduardo Carlos Pereira, 4125, B1 Ap32, Curitiba, PR, Brazil, CEP 8102025
|
8 |
-
#
|
9 |
-
# Repositórios e Projetos Relacionados:
|
10 |
-
# GitHub: https://github.com/carlex22/Aduc-sdr
|
11 |
-
# Hugging Face: https://huggingface.co/spaces/Carlexx/Ltx-SuperTime-60Secondos/
|
12 |
-
# Hugging Face: https://huggingface.co/spaces/Carlexxx/Novinho/
|
13 |
-
#
|
14 |
-
# Este programa é software livre: você pode redistribuí-lo e/ou modificá-lo
|
15 |
-
# sob os termos da Licença Pública Geral Affero da GNU como publicada pela
|
16 |
-
# Free Software Foundation, seja a versão 3 da Licença, ou
|
17 |
-
# (a seu critério) qualquer versão posterior.
|
18 |
-
|
19 |
-
# --- app.py (NOVIM-5.5: O Fator Humano) ---
|
20 |
-
|
21 |
-
# --- Ato 1: A Convocação da Orquestra (Importações) ---
|
22 |
-
import gradio as gr
|
23 |
-
import torch
|
24 |
-
import os
|
25 |
-
import yaml
|
26 |
-
from PIL import Image, ImageOps, ExifTags
|
27 |
-
import shutil
|
28 |
-
import gc
|
29 |
-
import subprocess
|
30 |
-
import google.generativeai as genai
|
31 |
-
import numpy as np
|
32 |
-
import imageio
|
33 |
-
from pathlib import Path
|
34 |
-
import huggingface_hub
|
35 |
-
import json
|
36 |
-
import time
|
37 |
-
|
38 |
-
from inference import create_ltx_video_pipeline, load_image_to_tensor_with_resize_and_crop, ConditioningItem, calculate_padding
|
39 |
-
from dreamo_helpers import dreamo_generator_singleton
|
40 |
-
|
41 |
-
# --- Ato 2: A Preparação do Palco (Configurações) ---
|
42 |
-
config_file_path = "configs/ltxv-13b-0.9.8-distilled.yaml"
|
43 |
-
with open(config_file_path, "r") as file: PIPELINE_CONFIG_YAML = yaml.safe_load(file)
|
44 |
-
|
45 |
-
LTX_REPO = "Lightricks/LTX-Video"
|
46 |
-
models_dir = "downloaded_models_gradio"
|
47 |
-
Path(models_dir).mkdir(parents=True, exist_ok=True)
|
48 |
-
WORKSPACE_DIR = "aduc_workspace"
|
49 |
-
GEMINI_API_KEY = os.environ.get("GEMINI_API_KEY")
|
50 |
-
|
51 |
-
VIDEO_FPS = 24
|
52 |
-
TARGET_RESOLUTION = 420
|
53 |
-
MAX_KEYFRAMES_UI = 10 # Limite de abas de keyframe na UI
|
54 |
-
|
55 |
-
print("Criando pipelines LTX na CPU (estado de repouso)...")
|
56 |
-
distilled_model_actual_path = huggingface_hub.hf_hub_download(repo_id=LTX_REPO, filename=PIPELINE_CONFIG_YAML["checkpoint_path"], local_dir=models_dir, local_dir_use_symlinks=False)
|
57 |
-
pipeline_instance = create_ltx_video_pipeline(
|
58 |
-
ckpt_path=distilled_model_actual_path,
|
59 |
-
precision=PIPELINE_CONFIG_YAML["precision"],
|
60 |
-
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
|
61 |
-
sampler=PIPELINE_CONFIG_YAML["sampler"],
|
62 |
-
device='cpu'
|
63 |
-
)
|
64 |
-
print("Modelos LTX prontos (na CPU).")
|
65 |
-
|
66 |
-
|
67 |
-
# --- Ato 3: As Partituras dos Músicos (Funções de Geração e Análise) ---
|
68 |
-
|
69 |
-
def robust_json_parser(raw_text: str) -> dict:
|
70 |
-
try:
|
71 |
-
start_index = raw_text.find('{'); end_index = raw_text.rfind('}')
|
72 |
-
if start_index != -1 and end_index != -1 and end_index > start_index:
|
73 |
-
json_str = raw_text[start_index : end_index + 1]; return json.loads(json_str)
|
74 |
-
else: raise ValueError("Nenhum objeto JSON válido encontrado na resposta da IA.")
|
75 |
-
except json.JSONDecodeError as e: raise ValueError(f"Falha ao decodificar JSON: {e}")
|
76 |
-
|
77 |
-
def run_storyboard_generation(num_fragments: int, prompt: str, initial_image_path: str):
|
78 |
-
if not initial_image_path: raise gr.Error("Por favor, forneça uma imagem de referência inicial.")
|
79 |
-
if not GEMINI_API_KEY: raise gr.Error("Chave da API Gemini não configurada!")
|
80 |
-
prompt_file = "prompts/unified_storyboard_prompt.txt"
|
81 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
82 |
-
director_prompt = template.format(user_prompt=prompt, num_fragments=int(num_fragments), image_metadata="")
|
83 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
84 |
-
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(initial_image_path)
|
85 |
-
response = model.generate_content([director_prompt, img])
|
86 |
-
try:
|
87 |
-
storyboard_data = robust_json_parser(response.text)
|
88 |
-
storyboard = storyboard_data.get("scene_storyboard", [])
|
89 |
-
if not storyboard or len(storyboard) != int(num_fragments): raise ValueError(f"A IA não gerou o número correto de cenas. Esperado: {num_fragments}, Recebido: {len(storyboard)}")
|
90 |
-
return storyboard
|
91 |
-
except Exception as e: raise gr.Error(f"O Roteirista (Gemini) falhou: {e}. Resposta: {response.text}")
|
92 |
-
|
93 |
-
def get_dreamo_prompt_for_transition(previous_image_path: str, target_scene_description: str) -> str:
|
94 |
-
genai.configure(api_key=GEMINI_API_KEY)
|
95 |
-
prompt_file = "prompts/img2img_evolution_prompt.txt"
|
96 |
-
with open(os.path.join(os.path.dirname(__file__), prompt_file), "r", encoding="utf-8") as f: template = f.read()
|
97 |
-
director_prompt = template.format(target_scene_description=target_scene_description)
|
98 |
-
model = genai.GenerativeModel('gemini-1.5-flash'); img = Image.open(previous_image_path)
|
99 |
-
response = model.generate_content([director_prompt, "Previous Image:", img])
|
100 |
-
return response.text.strip().replace("\"", "")
|
101 |
-
|
102 |
-
def run_keyframe_generation(storyboard, ref_images_tasks, progress=gr.Progress()):
|
103 |
-
if not storyboard: raise gr.Error("Nenhum roteiro para gerar keyframes.")
|
104 |
-
initial_ref_image_path = ref_images_tasks[0]['image']
|
105 |
-
if not initial_ref_image_path or not os.path.exists(initial_ref_image_path): raise gr.Error("A imagem de referência principal (à esquerda) é obrigatória.")
|
106 |
-
log_history = ""; keyframe_paths = []
|
107 |
-
try:
|
108 |
-
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
|
109 |
-
dreamo_generator_singleton.to_gpu()
|
110 |
-
with Image.open(initial_ref_image_path) as img: width, height = (img.width // 32) * 32, (img.height // 32) * 32
|
111 |
-
current_ref_image_path = initial_ref_image_path
|
112 |
-
for i, scene_description in enumerate(storyboard):
|
113 |
-
progress(i / len(storyboard), desc=f"Pintando Keyframe {i+1}/{len(storyboard)}")
|
114 |
-
log_history += f"\n--- PINTANDO KEYFRAME {i+1}/{len(storyboard)} ---\n"
|
115 |
-
dreamo_prompt = get_dreamo_prompt_for_transition(current_ref_image_path, scene_description)
|
116 |
-
reference_items = []
|
117 |
-
for item in ref_images_tasks:
|
118 |
-
if item['image'] and os.path.exists(item['image']):
|
119 |
-
reference_items.append({'image_np': np.array(Image.open(item['image']).convert("RGB")), 'task': item['task']})
|
120 |
-
log_history += f" - Roteiro: '{scene_description}'\n - Usando {len(reference_items)} referências visuais.\n - Prompt do D.A.: \"{dreamo_prompt}\"\n"
|
121 |
-
yield {keyframe_log_output: gr.update(value=log_history)}
|
122 |
-
output_path = os.path.join(WORKSPACE_DIR, f"keyframe_{i+1}.png")
|
123 |
-
image = dreamo_generator_singleton.generate_image_with_gpu_management(reference_items=reference_items, prompt=dreamo_prompt, width=width, height=height)
|
124 |
-
image.save(output_path)
|
125 |
-
keyframe_paths.append(output_path); current_ref_image_path = output_path
|
126 |
-
except Exception as e: raise gr.Error(f"O Pintor (DreamO) ou Diretor de Arte (Gemini) falhou: {e}")
|
127 |
-
finally: dreamo_generator_singleton.to_cpu(); gc.collect(); torch.cuda.empty_cache()
|
128 |
-
log_history += "\nPintura de todos os keyframes concluída.\n"
|
129 |
-
yield {keyframe_log_output: gr.update(value=log_history), keyframe_images_state: keyframe_paths}
|
130 |
-
|
131 |
-
def get_motion_prompt(user_prompt, start_path, end_path, scene_desc):
|
132 |
-
return f"A smooth, cinematic transition from the start image towards the end image, focusing on: {scene_desc}"
|
133 |
-
|
134 |
-
def run_video_production(
|
135 |
-
video_duration_seconds, video_fps, end_cond_strength,
|
136 |
-
prompt_geral, keyframe_paths_from_ui, scene_storyboard, cfg,
|
137 |
-
progress=gr.Progress()
|
138 |
-
):
|
139 |
-
valid_keyframes = [p for p in keyframe_paths_from_ui if p is not None and os.path.exists(p)]
|
140 |
-
if not valid_keyframes or len(valid_keyframes) < 2: raise gr.Error("São necessários pelo menos 2 keyframes válidos para produzir um vídeo.")
|
141 |
-
|
142 |
-
log_history = "\n--- FASE 3: Iniciando Produção...\n"
|
143 |
-
yield {production_log_output: log_history, video_gallery_glitch: []}
|
144 |
-
|
145 |
-
video_total_frames = int(video_duration_seconds * video_fps)
|
146 |
-
seed = int(time.time())
|
147 |
-
try:
|
148 |
-
pipeline_instance.to('cuda')
|
149 |
-
video_fragments = []; kinetic_memory_path = valid_keyframes[0]
|
150 |
-
with Image.open(kinetic_memory_path) as img: width, height = img.size
|
151 |
-
|
152 |
-
for i in range(len(valid_keyframes) - 1):
|
153 |
-
fragment_num = i + 1
|
154 |
-
progress(i / (len(valid_keyframes) - 1), desc=f"Filmando Fragmento {fragment_num}")
|
155 |
-
|
156 |
-
start_path = kinetic_memory_path
|
157 |
-
destination_path = valid_keyframes[i+1]
|
158 |
-
|
159 |
-
motion_prompt = get_motion_prompt(prompt_geral, start_path, destination_path, scene_storyboard[i])
|
160 |
-
|
161 |
-
conditioning_items_data = [(start_path, 0, 1.0), (destination_path, video_total_frames - 1, end_cond_strength)]
|
162 |
-
|
163 |
-
fragment_path, _ = run_ltx_animation(
|
164 |
-
current_fragment_index=fragment_num, motion_prompt=motion_prompt,
|
165 |
-
conditioning_items_data=conditioning_items_data, width=width, height=height,
|
166 |
-
seed=seed, cfg=cfg, progress=progress,
|
167 |
-
video_total_frames=video_total_frames, video_fps=video_fps, use_attention_slicing=True, num_inference_steps=30
|
168 |
-
)
|
169 |
-
|
170 |
-
video_fragments.append(fragment_path)
|
171 |
-
eco_output_path = os.path.join(WORKSPACE_DIR, f"eco_from_frag_{fragment_num}.png")
|
172 |
-
kinetic_memory_path = extract_last_frame_as_image(fragment_path, eco_output_path)
|
173 |
-
|
174 |
-
log_history += f"Fragmento {fragment_num} concluído.\n"
|
175 |
-
yield {production_log_output: log_history, video_gallery_glitch: video_fragments}
|
176 |
-
|
177 |
-
yield {production_log_output: log_history + "\nProdução concluída.", video_gallery_glitch: video_fragments, fragment_list_state: video_fragments}
|
178 |
-
finally:
|
179 |
-
pipeline_instance.to('cpu'); gc.collect(); torch.cuda.empty_cache()
|
180 |
-
|
181 |
-
def process_image_to_square(image_path: str, size: int = TARGET_RESOLUTION) -> str:
|
182 |
-
if not image_path: return None
|
183 |
-
try:
|
184 |
-
img = Image.open(image_path).convert("RGB"); img_square = ImageOps.fit(img, (size, size), Image.Resampling.LANCZOS)
|
185 |
-
output_path = os.path.join(WORKSPACE_DIR, f"initial_ref_{size}x{size}.png"); img_square.save(output_path)
|
186 |
-
return output_path
|
187 |
-
except Exception as e: raise gr.Error(f"Falha ao processar a imagem de referência: {e}")
|
188 |
-
|
189 |
-
def load_conditioning_tensor(media_path: str, height: int, width: int) -> torch.Tensor:
|
190 |
-
return load_image_to_tensor_with_resize_and_crop(media_path, height, width)
|
191 |
-
|
192 |
-
def run_ltx_animation(
|
193 |
-
current_fragment_index, motion_prompt, conditioning_items_data,
|
194 |
-
width, height, seed, cfg, progress,
|
195 |
-
video_total_frames, video_fps, use_attention_slicing, num_inference_steps
|
196 |
-
):
|
197 |
-
progress(0, desc=f"[Câmera LTX] Filmando Cena {current_fragment_index}...");
|
198 |
-
output_path = os.path.join(WORKSPACE_DIR, f"fragment_{current_fragment_index}_full.mp4"); target_device = 'cuda' if torch.cuda.is_available() else 'cpu'
|
199 |
-
try:
|
200 |
-
if use_attention_slicing: pipeline_instance.enable_attention_slicing()
|
201 |
-
conditioning_items = [ConditioningItem(load_conditioning_tensor(p, height, width).to(target_device), s, t) for p, s, t in conditioning_items_data]
|
202 |
-
actual_num_frames = int(round((float(video_total_frames) - 1.0) / 8.0) * 8 + 1)
|
203 |
-
padded_h, padded_w = ((height - 1) // 32 + 1) * 32, ((width - 1) // 32 + 1) * 32
|
204 |
-
padding_vals = calculate_padding(height, width, padded_h, padded_w)
|
205 |
-
for item in conditioning_items: item.media_item = torch.nn.functional.pad(item.media_item, padding_vals)
|
206 |
-
|
207 |
-
first_pass_config = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
|
208 |
-
first_pass_config['num_inference_steps'] = int(num_inference_steps)
|
209 |
-
|
210 |
-
kwargs = {"prompt": motion_prompt, "negative_prompt": "blurry, distorted, bad quality, artifacts", "height": padded_h, "width": padded_w, "num_frames": actual_num_frames, "frame_rate": video_fps, "generator": torch.Generator(device=target_device).manual_seed(int(seed) + current_fragment_index), "output_type": "pt", "guidance_scale": float(cfg), "timesteps": first_pass_config.get("timesteps"), "conditioning_items": conditioning_items, "decode_timestep": PIPELINE_CONFIG_YAML.get("decode_timestep"), "decode_noise_scale": PIPELINE_CONFIG_YAML.get("decode_noise_scale"), "stochastic_sampling": PIPELINE_CONFIG_YAML.get("stochastic_sampling"), "image_cond_noise_scale": 0.15, "is_video": True, "vae_per_channel_normalize": True, "mixed_precision": (PIPELINE_CONFIG_YAML.get("precision") == "mixed_precision"), "enhance_prompt": False, "decode_every": 4, "num_inference_steps": int(num_inference_steps)}
|
211 |
-
|
212 |
-
result_tensor = pipeline_instance(**kwargs).images
|
213 |
-
|
214 |
-
pad_l, pad_r, pad_t, pad_b = map(int, padding_vals); slice_h = -pad_b if pad_b > 0 else None; slice_w = -pad_r if pad_r > 0 else None
|
215 |
-
cropped_tensor = result_tensor[:, :, :video_total_frames, pad_t:slice_h, pad_l:slice_w]; video_np = (cropped_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy() * 255).astype(np.uint8)
|
216 |
-
with imageio.get_writer(output_path, fps=video_fps, codec='libx264', quality=8) as writer:
|
217 |
-
for i, frame in enumerate(video_np): writer.append_data(frame)
|
218 |
-
return output_path, actual_num_frames
|
219 |
-
finally:
|
220 |
-
if use_attention_slicing: pipeline_instance.disable_attention_slicing()
|
221 |
-
|
222 |
-
def trim_video_to_frames(input_path: str, output_path: str, frames_to_keep: int) -> str:
|
223 |
-
try:
|
224 |
-
subprocess.run(f"ffmpeg -y -v error -i \"{input_path}\" -vf \"select='lt(n,{frames_to_keep})'\" -an \"{output_path}\"", shell=True, check=True, text=True)
|
225 |
-
return output_path
|
226 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao cortar vídeo: {e.stderr}")
|
227 |
-
|
228 |
-
def extract_last_frame_as_image(video_path: str, output_image_path: str) -> str:
|
229 |
-
try:
|
230 |
-
subprocess.run(f"ffmpeg -y -v error -sseof -1 -i \"{video_path}\" -update 1 -q:v 1 \"{output_image_path}\"", shell=True, check=True, text=True)
|
231 |
-
return output_image_path
|
232 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou ao extrair último frame: {e.stderr}")
|
233 |
-
|
234 |
-
def concatenate_and_trim_masterpiece(fragment_paths: list, progress=gr.Progress()):
|
235 |
-
if not fragment_paths: raise gr.Error("Nenhum fragmento de vídeo para concatenar.")
|
236 |
-
progress(0.5, desc="Montando a obra-prima final...");
|
237 |
-
try:
|
238 |
-
list_file_path = os.path.join(WORKSPACE_DIR, "concat_list.txt"); final_output_path = os.path.join(WORKSPACE_DIR, "masterpiece_final.mp4")
|
239 |
-
with open(list_file_path, "w") as f:
|
240 |
-
for p in fragment_paths: f.write(f"file '{os.path.abspath(p)}'\n")
|
241 |
-
subprocess.run(f"ffmpeg -y -v error -f concat -safe 0 -i \"{list_file_path}\" -c copy \"{final_output_path}\"", shell=True, check=True, text=True)
|
242 |
-
progress(1.0, desc="Montagem concluída!")
|
243 |
-
return final_output_path
|
244 |
-
except subprocess.CalledProcessError as e: raise gr.Error(f"FFmpeg falhou na concatenação final: {e.stderr}")
|
245 |
-
|
246 |
-
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
247 |
-
gr.Markdown("# NOVIM-5.5 (O Fator Humano)\n*By Carlex & Gemini & DreamO*")
|
248 |
-
if os.path.exists(WORKSPACE_DIR): shutil.rmtree(WORKSPACE_DIR)
|
249 |
-
os.makedirs(WORKSPACE_DIR)
|
250 |
-
|
251 |
-
scene_storyboard_state, keyframe_images_state, fragment_list_state = gr.State([]), gr.State([]), gr.State([])
|
252 |
-
prompt_geral_state, processed_ref_path_state = gr.State(""), gr.State("")
|
253 |
-
|
254 |
-
gr.Markdown("--- \n ## ETAPA 1: O ROTEIRO (IA Roteirista)")
|
255 |
-
with gr.Row():
|
256 |
-
with gr.Column(scale=1):
|
257 |
-
prompt_input = gr.Textbox(label="Ideia Geral (Prompt)")
|
258 |
-
num_fragments_input = gr.Slider(2, MAX_KEYFRAMES_UI, 4, step=1, label="Número de Atos (Keyframes)")
|
259 |
-
image_input = gr.Image(type="filepath", label=f"Imagem de Referência Principal (será {TARGET_RESOLUTION}x{TARGET_RESOLUTION})")
|
260 |
-
director_button = gr.Button("▶️ 1. Gerar Roteiro", variant="primary")
|
261 |
-
with gr.Column(scale=2):
|
262 |
-
storyboard_to_show = gr.JSON(label="Roteiro de Cenas Gerado")
|
263 |
-
|
264 |
-
gr.Markdown("--- \n ## ETAPA 2: OS KEYFRAMES (IA Pintor & Diretor de Arte)")
|
265 |
-
with gr.Row():
|
266 |
-
with gr.Column(scale=2):
|
267 |
-
with gr.Row():
|
268 |
-
ref1_image = gr.Image(label="Referência Principal (Conteúdo/ID)", type="filepath")
|
269 |
-
ref1_task = gr.Dropdown(choices=["ip", "id", "style"], value="ip", label="Tarefa da Ref. Principal")
|
270 |
-
with gr.Row():
|
271 |
-
ref2_image = gr.Image(label="Referência Secundária (Opcional)", type="filepath")
|
272 |
-
ref2_task = gr.Dropdown(choices=["ip", "id", "style"], value="style", label="Tarefa da Ref. Secundária")
|
273 |
-
photographer_button = gr.Button("▶️ 2. Pintar Imagens-Chave em Cadeia", variant="primary")
|
274 |
-
keyframe_log_output = gr.Textbox(label="Diário de Bordo do Pintor", lines=10, interactive=False)
|
275 |
-
with gr.Column(scale=1):
|
276 |
-
gr.Markdown("### Painel de Edição de Keyframes")
|
277 |
-
keyframe_ui_slots = []
|
278 |
-
keyframe_ui_tabs_visibility = []
|
279 |
-
with gr.Tabs() as keyframe_tabs:
|
280 |
-
for i in range(MAX_KEYFRAMES_UI):
|
281 |
-
with gr.TabItem(f"Keyframe {i+1}", visible=(i<2)) as keyframe_tab:
|
282 |
-
keyframe_ui_slots.append(gr.Image(label=f"Conteúdo do Keyframe {i+1}", type="filepath", interactive=True))
|
283 |
-
keyframe_ui_tabs_visibility.append(keyframe_tab)
|
284 |
-
|
285 |
-
gr.Markdown("--- \n ## ETAPA 3: A PRODUÇÃO (IA Cineasta & Câmera)")
|
286 |
-
with gr.Row():
|
287 |
-
with gr.Column(scale=1):
|
288 |
-
cfg_slider = gr.Slider(1.0, 10.0, 7.5, step=0.1, label="CFG")
|
289 |
-
end_cond_strength_slider = gr.Slider(label="Força de Convergência do Destino", minimum=0.1, maximum=1.0, value=1.0, step=0.05)
|
290 |
-
with gr.Accordion("Controles Avançados de Timing", open=False):
|
291 |
-
video_duration_slider = gr.Slider(label="Duração da Cena (segundos)", minimum=2.0, maximum=10.0, value=4.0, step=0.5)
|
292 |
-
video_fps_slider = gr.Slider(label="FPS do Vídeo", minimum=12, maximum=36, value=VIDEO_FPS, step=1)
|
293 |
-
animator_button = gr.Button("▶️ 3. Produzir Cenas (Handoff Cinético)", variant="primary")
|
294 |
-
production_log_output = gr.Textbox(label="Diário de Bordo da Produção", lines=10, interactive=False)
|
295 |
-
with gr.Column(scale=1):
|
296 |
-
video_gallery_glitch = gr.Gallery(label="Fragmentos Gerados", object_fit="contain", height="auto", type="video")
|
297 |
-
|
298 |
-
gr.Markdown(f"--- \n ## ETAPA 4: PÓS-PRODUÇÃO (Editor)")
|
299 |
-
editor_button = gr.Button("▶️ 4. Montar Vídeo Final", variant="primary")
|
300 |
-
final_video_output = gr.Video(label="A Obra-Prima Final", width=TARGET_RESOLUTION)
|
301 |
-
|
302 |
-
def process_and_update_storyboard(num_fragments, prompt, image_path):
|
303 |
-
processed_path = process_image_to_square(image_path)
|
304 |
-
if not processed_path: raise gr.Error("A imagem de referência é inválida.")
|
305 |
-
storyboard = run_storyboard_generation(num_fragments, prompt, processed_path)
|
306 |
-
tab_updates = [gr.update(visible=(i < num_fragments)) for i in range(MAX_KEYFRAMES_UI)]
|
307 |
-
return storyboard, prompt, processed_path, storyboard, processed_path, *tab_updates
|
308 |
-
|
309 |
-
director_button.click(
|
310 |
-
fn=process_and_update_storyboard,
|
311 |
-
inputs=[num_fragments_input, prompt_input, image_input],
|
312 |
-
outputs=[scene_storyboard_state, prompt_geral_state, processed_ref_path_state, storyboard_to_show, ref1_image] + keyframe_ui_tabs_visibility
|
313 |
-
)
|
314 |
-
|
315 |
-
def run_keyframe_generation_wrapper(storyboard, ref1_img, ref1_tsk, ref2_img, ref2_tsk, progress=gr.Progress()):
|
316 |
-
ref_data = [{'image': ref1_img, 'task': ref1_tsk}, {'image': ref2_img, 'task': ref2_tsk}]
|
317 |
-
final_update = {}
|
318 |
-
for update in run_keyframe_generation(storyboard, ref_data, progress):
|
319 |
-
final_update = update
|
320 |
-
final_paths = final_update.get('keyframe_images_state', [])
|
321 |
-
updates = [gr.update(value=final_paths[i] if i < len(final_paths) else None) for i in range(MAX_KEYFRAMES_UI)]
|
322 |
-
return final_update.get('keyframe_log_output', ''), final_paths, *updates
|
323 |
-
|
324 |
-
photographer_button.click(
|
325 |
-
fn=run_keyframe_generation_wrapper,
|
326 |
-
inputs=[scene_storyboard_state, ref1_image, ref1_task, ref2_image, ref2_task],
|
327 |
-
outputs=[keyframe_log_output, keyframe_images_state] + keyframe_ui_slots
|
328 |
-
)
|
329 |
-
|
330 |
-
# A lista de inputs para a produção de vídeo agora coleta os keyframes das abas
|
331 |
-
video_prod_inputs = [
|
332 |
-
video_duration_slider, video_fps_slider, end_cond_strength_slider,
|
333 |
-
prompt_geral_state,
|
334 |
-
scene_storyboard_state, cfg_slider
|
335 |
-
] + keyframe_ui_slots
|
336 |
-
|
337 |
-
# A função wrapper é necessária para coletar os valores dos slots de keyframe
|
338 |
-
def run_video_production_wrapper(duration, fps, strength, prompt, storyboard, cfg, *keyframes, progress=gr.Progress()):
|
339 |
-
# Filtra os keyframes que não são None
|
340 |
-
valid_keyframes = [k for k in keyframes if k]
|
341 |
-
yield from run_video_production(duration, fps, strength, prompt, valid_keyframes, storyboard, cfg, progress)
|
342 |
-
|
343 |
-
animator_button.click(
|
344 |
-
fn=run_video_production_wrapper,
|
345 |
-
inputs=video_prod_inputs,
|
346 |
-
outputs=[production_log_output, video_gallery_glitch, fragment_list_state]
|
347 |
-
)
|
348 |
-
|
349 |
-
editor_button.click(
|
350 |
-
fn=concatenate_and_trim_masterpiece,
|
351 |
-
inputs=[fragment_list_state],
|
352 |
-
outputs=[final_video_output]
|
353 |
-
)
|
354 |
-
|
355 |
-
if __name__ == "__main__":
|
356 |
-
demo.queue().launch(server_name="0.0.0.0", share=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|