Spaces:
Sleeping
Sleeping
import gradio as gr | |
def inference(model_list, cot): | |
if len(model_list) != 3: | |
raise gr.Error("Please choose just '3' models! Neither more nor less!") | |
if cot: | |
b = "CoT was also used." | |
else: | |
b = "" | |
a = f"Hello, {model_list[0]}, {model_list[1]}, and {model_list[2]}!! {b}" | |
return { | |
output_msg: gr.update(visible=True), | |
output_col: gr.update(visible=True), | |
model1_output1: a | |
} | |
TITLE = """<h1 align="center">LLM Agora 🗣️🏦</h1>""" | |
INTRODUCTION_TEXT = """ | |
The **LLM Agora** 🗣️🏦 aims to improve the quality of open-source LMs' responses through debate & revision introduced in [Improving Factuality and Reasoning in Language Models through Multiagent Debate](https://arxiv.org/abs/2305.14325). | |
Do you know that? 🤔 **LLMs can also improve their responses by debating with other LLMs**! 😮 We applied this concept to several open-source LMs to verify that the open-source model, not the proprietary one, can sufficiently improve the response through discussion. 🤗 | |
For more details, please refer to the GitHub Repository below. | |
You can use LLM Agora with your own questions if the response of open-source LM is not satisfactory and you want to improve the quality! | |
The Math, GSM8K, and MMLU Tabs show the results of the experiment, and for inference, please use the 'Inference' tab. | |
Please check the more specific information in [GitHub Repository](https://github.com/gauss5930/LLM-Agora)! | |
""" | |
RESPONSE_TEXT = """<h1 align="center">🤗 Here are the responses to each model!! 🤗</h1>""" | |
with gr.Blocks() as demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT) | |
with gr.Column(): | |
with gr.Tab("Inference"): | |
with gr.Row(): | |
with gr.Column(): | |
model_list = gr.CheckboxGroup(["Llama2", "Alpaca", "Vicuna", "Koala", "Falcon", "Baize", "WizardLM", "Orca", "phi-1.5"], label="Model Selection", info="Choose 3 LMs to participate in LLM Agora.", type="value") | |
cot = gr.Checkbox(label="CoT", info="Do you want to use CoT for inference?") | |
with gr.Column(): | |
API_KEY = gr.Textbox(label="OpenAI API Key", value="", info="Please fill in your OpenAI API token.", placeholder="sk..", type="password") | |
auth_token = gr.Textbox(label="Huggingface Authentication Token", value="", info="Please fill in your HuggingFace Authentication token.", placeholder="hf..", type="password") | |
with gr.Column(): | |
question = gr.Textbox(value="", info="Please type your question!", placeholder="") | |
output = gr.Textbox() | |
submit = gr.Button("Submit") | |
with gr.Row(visible=False) as output_msg: | |
gr.HTML(RESPONSE_TEXT) | |
with gr.Row(visible=False) as output_col: | |
with gr.Column(): | |
model1_output1 = gr.Textbox(label="1️⃣ model's initial response") | |
model1_output2 = gr.Textbox(label="1️⃣ model's revised response") | |
model1_output3 = gr.Textbox(label="1️⃣ model's final response") | |
with gr.Column(): | |
model2_output1 = gr.Textbox(label="2️⃣ model's initial response") | |
model2_output2 = gr.Textbox(label="2️⃣ model's revised response") | |
model2_output3 = gr.Textbox(label="2️⃣ model's final response") | |
with gr.Column(): | |
model2_output1 = gr.Textbox(label="3️⃣ model's initial response") | |
model2_output2 = gr.Textbox(label="3️⃣ model's revised response") | |
model2_output3 = gr.Textbox(label="3️⃣ model's final response") | |
with gr.Tab("Math"): | |
output_math = gr.Textbox() | |
with gr.Tab("GSM8K"): | |
output_gsm = gr.Textbox() | |
with gr.Tab("MMLU"): | |
output_mmlu = gr.Textbox() | |
submit.click(inference, [model_list], [output_msg, output_col, model1_output1]) | |
demo.launch(debug=True) |