Cartinoe5930 commited on
Commit
66af638
·
1 Parent(s): 3c56ca5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +26 -23
app.py CHANGED
@@ -106,33 +106,36 @@ def load_responses():
106
  with open("result/GSM8K/gsm_result_cot.json", "r") as gsm_cot_file:
107
  gsm_cot_responses = json.load(gsm_cot_file)
108
 
109
- # with open("result/MMLU/mmlu_result.json", "r") as mmlu_file:
110
- # mmlu_responses = json.load(mmlu_file)
111
 
112
- # with open("result/MMLU/mmlu_result_cot.json", "r") as mmlu_cot_file:
113
- # mmlu_cot_responses = json.load(mmlu_cot_file)
114
 
115
- return math_responses, math_cot_responses, gsm_responses, gsm_cot_responses#, mmlu_responses
116
 
117
  def load_questions(math, gsm):
118
  math_questions = []
119
  gsm_questions = []
120
- # mmlu_questions = []
121
  for i in range(100):
122
  math_questions.append(f"{i+1}: " + math[i]["question"][:128] + "...")
123
  gsm_questions.append(f"{i+1}: " + gsm[i]["question"][:128] + "...")
124
- # mmlu_questions.append(f"{i+1}: " + mmlu[i]["question"][:128] + "...")
125
 
126
- return math_questions, gsm_questions#, mmlu_questions
127
 
128
- math_result, math_cot_result, gsm_result, gsm_cot_result = load_responses()
129
 
130
- math_questions, gsm_questions = load_questions(math_result, gsm_result)
131
 
132
  math_question_selector_map = build_question_selector_map(math_result)
133
  math_cot_question_selector_map = build_question_selector_map(math_cot_result)
134
  gsm_question_selector_map = build_question_selector_map(gsm_result)
135
  gsm_cot_question_selector_map = build_question_selector_map(gsm_cot_result)
 
 
 
136
 
137
  TITLE = """<h1 align="center">LLM Agora 🗣️🏦</h1>"""
138
 
@@ -317,7 +320,7 @@ with gr.Blocks() as demo:
317
 
318
  with gr.Tab("MMLU"):
319
  mmlu_cot = gr.Checkbox(label="CoT", info="If you want to see CoT result, please check the box.")
320
- # mmlu_question_list = gr.Dropdown(mmlu_questions, value=callable(mmlu_questions), label="MMLU Question", every=0.1)
321
 
322
  with gr.Column():
323
  with gr.Row(elem_id="model1_response"):
@@ -336,18 +339,18 @@ with gr.Blocks() as demo:
336
  mmlu_model3_output3 = gr.Textbox(label="Orca🐬's 3️⃣rd response")
337
 
338
  gr.HTML("""<h1 align="center"> The result of MMLU </h1>""")
339
- # gr.Image(value="result/MMLU/MMLU_performance.png")
340
-
341
- # mmlu_cot.select(
342
- # mmlu_display_question_answer,
343
- # [mmlu_question_list, mmlu_cot],
344
- # [mmlu_model1_output1, mmlu_model2_output1, mmlu_model3_output1, mmlu_summarization_text1, mmlu_model1_output2, mmlu_model2_output2, mmlu_model3_output2, mmlu_summarization_text2, mmlu_model1_output3, mmlu_model2_output3, mmlu_model3_output3]
345
- # )
346
- # mmlu_question_list.change(
347
- # mmlu_display_question_answer,
348
- # [mmlu_question_list, mmlu_cot],
349
- # [mmlu_model1_output1, mmlu_model2_output1, mmlu_model3_output1, mmlu_summarization_text1, mmlu_model1_output2, mmlu_model2_output2, mmlu_model3_output2, mmlu_summarization_text2, mmlu_model1_output3, mmlu_model2_output3, mmlu_model3_output3]
350
- # )
351
 
352
  with gr.Accordion("※ Specific information about LLM Agora", open=False):
353
  gr.Markdown(SPECIFIC_INFORMATION)
 
106
  with open("result/GSM8K/gsm_result_cot.json", "r") as gsm_cot_file:
107
  gsm_cot_responses = json.load(gsm_cot_file)
108
 
109
+ with open("result/MMLU/mmlu_result.json", "r") as mmlu_file:
110
+ mmlu_responses = json.load(mmlu_file)
111
 
112
+ with open("result/MMLU/mmlu_result_cot.json", "r") as mmlu_cot_file:
113
+ mmlu_cot_responses = json.load(mmlu_cot_file)
114
 
115
+ return math_responses, math_cot_responses, gsm_responses, gsm_cot_responses, mmlu_responses, mmlu_cot_responses
116
 
117
  def load_questions(math, gsm):
118
  math_questions = []
119
  gsm_questions = []
120
+ mmlu_questions = []
121
  for i in range(100):
122
  math_questions.append(f"{i+1}: " + math[i]["question"][:128] + "...")
123
  gsm_questions.append(f"{i+1}: " + gsm[i]["question"][:128] + "...")
124
+ mmlu_questions.append(f"{i+1}: " + mmlu[i]["question"][:128] + "...")
125
 
126
+ return math_questions, gsm_questions, mmlu_questions
127
 
128
+ math_result, math_cot_result, gsm_result, gsm_cot_result, mmlu_result, mmlu_cot_result = load_responses()
129
 
130
+ math_questions, gsm_questions, mmlu_questions = load_questions(math_result, gsm_result, mmlu_result)
131
 
132
  math_question_selector_map = build_question_selector_map(math_result)
133
  math_cot_question_selector_map = build_question_selector_map(math_cot_result)
134
  gsm_question_selector_map = build_question_selector_map(gsm_result)
135
  gsm_cot_question_selector_map = build_question_selector_map(gsm_cot_result)
136
+ mmlu_question_selector_map = build_question_selector_map(mmlu_result)
137
+ mmlu_cot_question_selector_map = build_question_selector_map(mmlu_cot_result)
138
+
139
 
140
  TITLE = """<h1 align="center">LLM Agora 🗣️🏦</h1>"""
141
 
 
320
 
321
  with gr.Tab("MMLU"):
322
  mmlu_cot = gr.Checkbox(label="CoT", info="If you want to see CoT result, please check the box.")
323
+ mmlu_question_list = gr.Dropdown(mmlu_questions, value=callable(mmlu_questions), label="MMLU Question", every=0.1)
324
 
325
  with gr.Column():
326
  with gr.Row(elem_id="model1_response"):
 
339
  mmlu_model3_output3 = gr.Textbox(label="Orca🐬's 3️⃣rd response")
340
 
341
  gr.HTML("""<h1 align="center"> The result of MMLU </h1>""")
342
+ gr.HTML("""<p align="center"><img src="https://github.com/composable-models/llm_multiagent_debate/assets/80087878/963571aa-228b-4d73-9082-5f528552383e"""")
343
+
344
+ mmlu_cot.select(
345
+ mmlu_display_question_answer,
346
+ [mmlu_question_list, mmlu_cot],
347
+ [mmlu_model1_output1, mmlu_model2_output1, mmlu_model3_output1, mmlu_summarization_text1, mmlu_model1_output2, mmlu_model2_output2, mmlu_model3_output2, mmlu_summarization_text2, mmlu_model1_output3, mmlu_model2_output3, mmlu_model3_output3]
348
+ )
349
+ mmlu_question_list.change(
350
+ mmlu_display_question_answer,
351
+ [mmlu_question_list, mmlu_cot],
352
+ [mmlu_model1_output1, mmlu_model2_output1, mmlu_model3_output1, mmlu_summarization_text1, mmlu_model1_output2, mmlu_model2_output2, mmlu_model3_output2, mmlu_summarization_text2, mmlu_model1_output3, mmlu_model2_output3, mmlu_model3_output3]
353
+ )
354
 
355
  with gr.Accordion("※ Specific information about LLM Agora", open=False):
356
  gr.Markdown(SPECIFIC_INFORMATION)