Spaces:
Running
Running
Commit
·
66af638
1
Parent(s):
3c56ca5
Update app.py
Browse files
app.py
CHANGED
@@ -106,33 +106,36 @@ def load_responses():
|
|
106 |
with open("result/GSM8K/gsm_result_cot.json", "r") as gsm_cot_file:
|
107 |
gsm_cot_responses = json.load(gsm_cot_file)
|
108 |
|
109 |
-
|
110 |
-
|
111 |
|
112 |
-
|
113 |
-
|
114 |
|
115 |
-
return math_responses, math_cot_responses, gsm_responses, gsm_cot_responses
|
116 |
|
117 |
def load_questions(math, gsm):
|
118 |
math_questions = []
|
119 |
gsm_questions = []
|
120 |
-
|
121 |
for i in range(100):
|
122 |
math_questions.append(f"{i+1}: " + math[i]["question"][:128] + "...")
|
123 |
gsm_questions.append(f"{i+1}: " + gsm[i]["question"][:128] + "...")
|
124 |
-
|
125 |
|
126 |
-
return math_questions, gsm_questions
|
127 |
|
128 |
-
math_result, math_cot_result, gsm_result, gsm_cot_result = load_responses()
|
129 |
|
130 |
-
math_questions, gsm_questions = load_questions(math_result, gsm_result)
|
131 |
|
132 |
math_question_selector_map = build_question_selector_map(math_result)
|
133 |
math_cot_question_selector_map = build_question_selector_map(math_cot_result)
|
134 |
gsm_question_selector_map = build_question_selector_map(gsm_result)
|
135 |
gsm_cot_question_selector_map = build_question_selector_map(gsm_cot_result)
|
|
|
|
|
|
|
136 |
|
137 |
TITLE = """<h1 align="center">LLM Agora 🗣️🏦</h1>"""
|
138 |
|
@@ -317,7 +320,7 @@ with gr.Blocks() as demo:
|
|
317 |
|
318 |
with gr.Tab("MMLU"):
|
319 |
mmlu_cot = gr.Checkbox(label="CoT", info="If you want to see CoT result, please check the box.")
|
320 |
-
|
321 |
|
322 |
with gr.Column():
|
323 |
with gr.Row(elem_id="model1_response"):
|
@@ -336,18 +339,18 @@ with gr.Blocks() as demo:
|
|
336 |
mmlu_model3_output3 = gr.Textbox(label="Orca🐬's 3️⃣rd response")
|
337 |
|
338 |
gr.HTML("""<h1 align="center"> The result of MMLU </h1>""")
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
-
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
|
352 |
with gr.Accordion("※ Specific information about LLM Agora", open=False):
|
353 |
gr.Markdown(SPECIFIC_INFORMATION)
|
|
|
106 |
with open("result/GSM8K/gsm_result_cot.json", "r") as gsm_cot_file:
|
107 |
gsm_cot_responses = json.load(gsm_cot_file)
|
108 |
|
109 |
+
with open("result/MMLU/mmlu_result.json", "r") as mmlu_file:
|
110 |
+
mmlu_responses = json.load(mmlu_file)
|
111 |
|
112 |
+
with open("result/MMLU/mmlu_result_cot.json", "r") as mmlu_cot_file:
|
113 |
+
mmlu_cot_responses = json.load(mmlu_cot_file)
|
114 |
|
115 |
+
return math_responses, math_cot_responses, gsm_responses, gsm_cot_responses, mmlu_responses, mmlu_cot_responses
|
116 |
|
117 |
def load_questions(math, gsm):
|
118 |
math_questions = []
|
119 |
gsm_questions = []
|
120 |
+
mmlu_questions = []
|
121 |
for i in range(100):
|
122 |
math_questions.append(f"{i+1}: " + math[i]["question"][:128] + "...")
|
123 |
gsm_questions.append(f"{i+1}: " + gsm[i]["question"][:128] + "...")
|
124 |
+
mmlu_questions.append(f"{i+1}: " + mmlu[i]["question"][:128] + "...")
|
125 |
|
126 |
+
return math_questions, gsm_questions, mmlu_questions
|
127 |
|
128 |
+
math_result, math_cot_result, gsm_result, gsm_cot_result, mmlu_result, mmlu_cot_result = load_responses()
|
129 |
|
130 |
+
math_questions, gsm_questions, mmlu_questions = load_questions(math_result, gsm_result, mmlu_result)
|
131 |
|
132 |
math_question_selector_map = build_question_selector_map(math_result)
|
133 |
math_cot_question_selector_map = build_question_selector_map(math_cot_result)
|
134 |
gsm_question_selector_map = build_question_selector_map(gsm_result)
|
135 |
gsm_cot_question_selector_map = build_question_selector_map(gsm_cot_result)
|
136 |
+
mmlu_question_selector_map = build_question_selector_map(mmlu_result)
|
137 |
+
mmlu_cot_question_selector_map = build_question_selector_map(mmlu_cot_result)
|
138 |
+
|
139 |
|
140 |
TITLE = """<h1 align="center">LLM Agora 🗣️🏦</h1>"""
|
141 |
|
|
|
320 |
|
321 |
with gr.Tab("MMLU"):
|
322 |
mmlu_cot = gr.Checkbox(label="CoT", info="If you want to see CoT result, please check the box.")
|
323 |
+
mmlu_question_list = gr.Dropdown(mmlu_questions, value=callable(mmlu_questions), label="MMLU Question", every=0.1)
|
324 |
|
325 |
with gr.Column():
|
326 |
with gr.Row(elem_id="model1_response"):
|
|
|
339 |
mmlu_model3_output3 = gr.Textbox(label="Orca🐬's 3️⃣rd response")
|
340 |
|
341 |
gr.HTML("""<h1 align="center"> The result of MMLU </h1>""")
|
342 |
+
gr.HTML("""<p align="center"><img src="https://github.com/composable-models/llm_multiagent_debate/assets/80087878/963571aa-228b-4d73-9082-5f528552383e"""")
|
343 |
+
|
344 |
+
mmlu_cot.select(
|
345 |
+
mmlu_display_question_answer,
|
346 |
+
[mmlu_question_list, mmlu_cot],
|
347 |
+
[mmlu_model1_output1, mmlu_model2_output1, mmlu_model3_output1, mmlu_summarization_text1, mmlu_model1_output2, mmlu_model2_output2, mmlu_model3_output2, mmlu_summarization_text2, mmlu_model1_output3, mmlu_model2_output3, mmlu_model3_output3]
|
348 |
+
)
|
349 |
+
mmlu_question_list.change(
|
350 |
+
mmlu_display_question_answer,
|
351 |
+
[mmlu_question_list, mmlu_cot],
|
352 |
+
[mmlu_model1_output1, mmlu_model2_output1, mmlu_model3_output1, mmlu_summarization_text1, mmlu_model1_output2, mmlu_model2_output2, mmlu_model3_output2, mmlu_summarization_text2, mmlu_model1_output3, mmlu_model2_output3, mmlu_model3_output3]
|
353 |
+
)
|
354 |
|
355 |
with gr.Accordion("※ Specific information about LLM Agora", open=False):
|
356 |
gr.Markdown(SPECIFIC_INFORMATION)
|