|
import argparse |
|
import gradio as gr |
|
import torch |
|
from PIL import Image |
|
from transformers import DonutProcessor, VisionEncoderDecoderModel |
|
|
|
task_prompt = f"<s_sroie>" |
|
pretrained_path = "Chan-yeong/donut-sroie-company-sample-demo" |
|
|
|
processor = DonutProcessor.from_pretrained(pretrained_path) |
|
pretrained_model = VisionEncoderDecoderModel.from_pretrained(pretrained_path) |
|
pretrained_model.half() |
|
pretrained_model.eval() |
|
|
|
import re |
|
|
|
def token2json(tokens, is_inner_value=False): |
|
""" |
|
Convert a (generated) token seuqnce into an ordered JSON format |
|
""" |
|
output = dict() |
|
|
|
while tokens: |
|
start_token = re.search(r"<s_(.*?)>", tokens, re.IGNORECASE) |
|
if start_token is None: |
|
break |
|
key = start_token.group(1) |
|
end_token = re.search(fr"</s_{key}>", tokens, re.IGNORECASE) |
|
start_token = start_token.group() |
|
if end_token is None: |
|
tokens = tokens.replace(start_token, "") |
|
else: |
|
end_token = end_token.group() |
|
start_token_escaped = re.escape(start_token) |
|
end_token_escaped = re.escape(end_token) |
|
content = re.search(f"{start_token_escaped}(.*?){end_token_escaped}", tokens, re.IGNORECASE) |
|
if content is not None: |
|
content = content.group(1).strip() |
|
if r"<s_" in content and r"</s_" in content: |
|
value = token2json(content, is_inner_value=True) |
|
if value: |
|
if len(value) == 1: |
|
value = value[0] |
|
output[key] = value |
|
else: |
|
output[key] = [] |
|
for leaf in content.split(r"<sep/>"): |
|
leaf = leaf.strip() |
|
output[key].append(leaf) |
|
if len(output[key]) == 1: |
|
output[key] = output[key][0] |
|
|
|
tokens = tokens[tokens.find(end_token) + len(end_token) :].strip() |
|
if tokens[:6] == r"<sep/>": |
|
return [output] + token2json(tokens[6:], is_inner_value=True) |
|
|
|
if len(output): |
|
return [output] if is_inner_value else output |
|
else: |
|
return [] if is_inner_value else {"text_sequence": tokens} |
|
|
|
def demo_process(input_img): |
|
global pretrained_model, task_prompt, device |
|
input_img = Image.fromarray(input_img) |
|
pixel_values = processor(input_img, return_tensors="pt").pixel_values.half().to(device) |
|
|
|
decoder_input_ids = torch.full((1, 1), pretrained_model.config.decoder_start_token_id, device=device) |
|
|
|
outputs = pretrained_model.generate(pixel_values, |
|
decoder_input_ids=decoder_input_ids, |
|
max_length=pretrained_model.config.decoder.max_length, |
|
early_stopping=True, |
|
pad_token_id=processor.tokenizer.pad_token_id, |
|
eos_token_id=processor.tokenizer.eos_token_id, |
|
use_cache=True, |
|
num_beams=1, |
|
bad_words_ids=[[processor.tokenizer.unk_token_id]], |
|
return_dict_in_generate=True,) |
|
|
|
predictions = [] |
|
for seq in processor.tokenizer.batch_decode(outputs.sequences): |
|
seq = seq.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "") |
|
seq = re.sub(r"<.*?>", "", seq, count=1).strip() |
|
predictions.append(seq) |
|
return token2json(predictions[0]) |
|
|
|
|
|
demo = gr.Interface( |
|
fn=demo_process, |
|
inputs="image", |
|
outputs="json", |
|
title=f"Donut π© demonstration", |
|
) |
|
demo.launch(debug=True) |