import gradio as gr import os import pandas as pd from datasets import load_dataset from kaggle.api.kaggle_api_extended import KaggleApi # Kaggle authentication api = KaggleApi() try: api.authenticate() print("Kaggle authentication successful.") except Exception as e: print(f"Kaggle authentication failed: {e}") exit(1) # Download dataset from Kaggle (replace with your dataset path) kaggle_dataset_path = "" # Replace with actual dataset path try: os.system(f"kaggle datasets download -d {kaggle_dataset_path}") print(f"Dataset {kaggle_dataset_path} downloaded successfully.") except Exception as e: print(f"Failed to download Kaggle dataset: {e}") exit(1) # Extract the dataset (replace with actual dataset name) dataset_name = "" # Replace with actual dataset name try: os.system(f"unzip ./{dataset_name}.zip -d ./data/") print(f"Dataset {dataset_name} extracted successfully.") except Exception as e: print(f"Failed to extract dataset: {e}") exit(1) # Load Hugging Face dataset hf_dataset_name = 'dataset_name' # Replace with actual Hugging Face dataset name try: hf_dataset = load_dataset(hf_dataset_name) hf_df = pd.DataFrame(hf_dataset['train']) print(f"Hugging Face dataset {hf_dataset_name} loaded successfully.") except Exception as e: print(f"Failed to load Hugging Face dataset: {e}") exit(1) # Load Kaggle dataset (replace with actual path) kaggle_df_path = './data/kaggle_dataset.csv' # Replace with the actual path to Kaggle dataset try: kaggle_df = pd.read_csv(kaggle_df_path) print(f"Kaggle dataset loaded from {kaggle_df_path}.") except Exception as e: print(f"Failed to load Kaggle dataset: {e}") exit(1) # Merge datasets merged_df = pd.concat([hf_df, kaggle_df], ignore_index=True) # Function to display merged data def display_data(): return merged_df.head() # Create Gradio interface to display data iface = gr.Interface(fn=display_data, inputs=[], outputs="dataframe") # Launch the Gradio app iface.launch()