import gradio as gr
from diffusers import DiffusionPipeline,StableDiffusionInpaintPipeline
import torch
from .utils.prompt2prompt import generate
from .utils.device import get_device
from .utils.schedulers import SCHEDULER_LIST, get_scheduler_list
from .download import get_share_js, CSS, get_community_loading_icon

INPAINT_MODEL_LIST = {
    "Stable Diffusion 2" : "stabilityai/stable-diffusion-2-inpainting",
    "Stable Diffusion 1" : "runwayml/stable-diffusion-inpainting",
}

class StableDiffusionInpaintGenerator:
    def __init__(self):
        self.pipe = None

    def load_model(self, model_path, scheduler):
        model_path = INPAINT_MODEL_LIST[model_path]
        if self.pipe is None:
            self.pipe = StableDiffusionInpaintPipeline.from_pretrained(
                model_path, torch_dtype=torch.float32
            )
        device = get_device()
        self.pipe = get_scheduler_list(pipe=self.pipe, scheduler=scheduler)
        self.pipe.to(device)
        self.pipe.enable_attention_slicing()
        return self.pipe

    def generate_image(
        self,
        pil_image: str,
        model_path: str,
        prompt: str,
        negative_prompt: str,
        scheduler: str,
        guidance_scale: int,
        num_inference_step: int,
        height: int,
        width: int,
        seed_generator=0,
    ):
        
        image = pil_image["image"].convert("RGB").resize((width, height))
        mask_image = pil_image["mask"].convert("RGB").resize((width, height))

        pipe = self.load_model(model_path,scheduler)

        if seed_generator == 0:
            random_seed = torch.randint(0, 1000000, (1,))
            generator = torch.manual_seed(random_seed)
        else:
            generator = torch.manual_seed(seed_generator)

        output = pipe(
            prompt=prompt,
            image=image,
            mask_image=mask_image,
            negative_prompt=negative_prompt,
            num_images_per_prompt=1,
            num_inference_steps=num_inference_step,
            guidance_scale=guidance_scale,
            generator=generator,
        ).images

        return output
    

    def app():
        demo = gr.Blocks(css=CSS)
        with demo:
            with gr.Row():
                with gr.Column():
                    stable_diffusion_inpaint_image_file = gr.Image(
                        source="upload",
                        tool="sketch",
                        elem_id="image-upload-inpainting",
                        type="pil",
                        label="Upload",

                    ).style(height=260)

                    stable_diffusion_inpaint_prompt = gr.Textbox(
                        lines=1,
                        placeholder="Prompt, keywords that explains how you want to modify the image.",
                        show_label=False,
                        elem_id="prompt-text-input-inpainting",
                        value=''
                    )

                    stable_diffusion_inpaint_negative_prompt = gr.Textbox(
                        lines=1,
                        placeholder="Negative Prompt, keywords that describe what you don't want in your image",
                        show_label=False,
                        elem_id = "negative-prompt-text-input-inpainting",
                        value=''
                    )
                    # add button for generating a prompt from the prompt
                    stable_diffusion_inpaint_generate = gr.Button(
                        label="Generate Prompt",
                        type="primary",
                        align="center",
                        value = "Generate Prompt"
                    )

                    # show a text box with the generated prompt
                    stable_diffusion_inpaint_generated_prompt = gr.Textbox(
                        lines=1,
                        placeholder="Generated Prompt",
                        show_label=False,
                        info="Auto generated prompts for inspiration.",

                    )

                    stable_diffusion_inpaint_model_id = gr.Dropdown(
                        choices=list(INPAINT_MODEL_LIST.keys()),
                        value=list(INPAINT_MODEL_LIST.keys())[0],
                        label="Inpaint Model Selection",
                        elem_id="model-dropdown-inpainting",
                        info="Select the model you want to use for inpainting."
                    )

                    stable_diffusion_inpaint_scheduler = gr.Dropdown(
                            choices=SCHEDULER_LIST,
                            value=SCHEDULER_LIST[0],
                            label="Scheduler",
                            elem_id="scheduler-dropdown-inpainting",
                            info="Scheduler list for models. Different schdulers result in different outputs."
                    )


                    stable_diffusion_inpaint_guidance_scale = gr.Slider(
                        minimum=0.1,
                        maximum=15,
                        step=0.1,
                        value=7.5,
                        label="Guidance Scale",
                        elem_id = "guidance-scale-slider-inpainting",
                        info = "Guidance scale determines how much the prompt will affect the image. Higher the value, more the effect."

                    )

                    stable_diffusion_inpaint_num_inference_step = gr.Slider(
                        minimum=1,
                        maximum=100,
                        step=1,
                        value=50,
                        label="Num Inference Step",
                        elem_id = "num-inference-step-slider-inpainting",
                        info = "Number of inference step determines the quality of the image. Higher the number, better the quality."

                    )
  
                    stable_diffusion_inpaint_size = gr.Slider(
                        minimum=128,
                        maximum=1280,
                        step=32,
                        value=512,
                        label="Image Size",
                        elem_id="image-size-slider-inpainting",
                        info = "Image size determines the height and width of the generated image. Higher the value, better the quality however slower the computation."

                    )

                    stable_diffusion_inpaint_seed_generator = gr.Slider(
                        label="Seed(0 for random)",
                        minimum=0,
                        maximum=1000000,
                        value=0,
                        elem_id="seed-slider-inpainting",
                        info="Set the seed to a specific value to reproduce the results."
                    )

                    stable_diffusion_inpaint_predict = gr.Button(
                        value="Generate image"
                    )
                
                with gr.Column():
                    output_image = gr.Gallery(
                        label="Generated images",
                        show_label=False,
                        elem_id="gallery-inpainting",
                    ).style(grid=(1, 2))

                    with gr.Group(elem_id="container-advanced-btns"):
                        with gr.Group(elem_id="share-btn-container"):
                            community_icon_html, loading_icon_html = get_community_loading_icon("inpainting")
                            community_icon = gr.HTML(community_icon_html)
                            loading_icon = gr.HTML(loading_icon_html)
                            share_button = gr.Button("Save artwork", elem_id="share-btn-inpainting")

                    gr.HTML(
                        """
                        <div id="model-description-img2img">
                            <h3>Inpainting Models</h3>
                            <p>Inpainting models will take a masked image and modify the masked image with the given prompt.</p>
                            <p>Prompt should describe how you want to modify the image. For example, if you want to modify the image to have a blue sky, you can use the prompt "sky is blue".</p>
                            <p>Negative prompt should describe what you don't want in your image. For example, if you don't want the image to have a red sky, you can use the negative prompt "sky is red".</p>
                            <hr>
                            <p>Stable Diffusion 1 & 2: Default model for many tasks. </p>
                            </div>
                        """
                    )
            stable_diffusion_inpaint_predict.click(
                fn=StableDiffusionInpaintGenerator().generate_image,
                inputs=[
                    stable_diffusion_inpaint_image_file,
                    stable_diffusion_inpaint_model_id,
                    stable_diffusion_inpaint_prompt,
                    stable_diffusion_inpaint_negative_prompt,
                    stable_diffusion_inpaint_scheduler,
                    stable_diffusion_inpaint_guidance_scale,
                    stable_diffusion_inpaint_num_inference_step,
                    stable_diffusion_inpaint_size,
                    stable_diffusion_inpaint_size,
                    stable_diffusion_inpaint_seed_generator,
                ],
                outputs=[output_image],
            )

            stable_diffusion_inpaint_generate.click(
                fn=generate,
                inputs=[stable_diffusion_inpaint_prompt],
                outputs=[stable_diffusion_inpaint_generated_prompt],
            )

            


        return demo