RU_AI_Detector / NN_classifier /neural_net_t.py
CoffeBank's picture
update
ce79581
import numpy as np
import pandas as pd
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer
import matplotlib.pyplot as plt
import json
import joblib
import os
import seaborn as sns
from sklearn.model_selection import StratifiedKFold
from scipy import stats
import time
import argparse
def setup_gpu():
if torch.cuda.is_available():
return True
else:
print("No GPUs found. Using CPU.")
return False
GPU_AVAILABLE = setup_gpu()
DEVICE = torch.device('cuda' if GPU_AVAILABLE else 'cpu')
def load_data_from_json(directory_path):
if os.path.isfile(directory_path):
directory = os.path.dirname(directory_path)
else:
directory = directory_path
print(f"Loading JSON files from directory: {directory}")
json_files = [os.path.join(directory, f) for f in os.listdir(directory)
if f.endswith('.json') and os.path.isfile(os.path.join(directory, f))]
if not json_files:
raise ValueError(f"No JSON files found in directory {directory}")
print(f"Found {len(json_files)} JSON files")
all_data = []
for file_path in json_files:
try:
with open(file_path, 'r', encoding='utf-8') as f:
data_dict = json.load(f)
if 'data' in data_dict:
all_data.extend(data_dict['data'])
else:
print(f"Warning: 'data' key not found in {os.path.basename(file_path)}")
except Exception as e:
print(f"Error loading {os.path.basename(file_path)}: {str(e)}")
if not all_data:
raise ValueError("Failed to load data from JSON files")
df = pd.DataFrame(all_data)
label_mapping = {
'ai': 'Raw AI',
'human': 'Human',
'ai+rew': 'Rephrased AI'
}
if 'source' in df.columns:
df['label'] = df['source'].map(lambda x: label_mapping.get(x, x))
else:
print("Warning: 'source' column not found, using default label")
df['label'] = 'Unknown'
return df
class Neural_Network(nn.Module):
def __init__(self, input_size, hidden_layers, num_classes, dropout_rate=0.2):
super(Neural_Network, self).__init__()
layers = []
prev_size = input_size
for hidden_size in hidden_layers:
layers.append(nn.Linear(prev_size, hidden_size))
layers.append(nn.ReLU())
layers.append(nn.Dropout(dropout_rate))
prev_size = hidden_size
layers.append(nn.Linear(prev_size, num_classes))
self.model = nn.Sequential(*layers)
def forward(self, x):
return self.model(x)
def build_neural_network(input_shape, num_classes, hidden_layers=[64, 32]):
model = Neural_Network(input_shape, hidden_layers, num_classes).to(DEVICE)
print(f"Model created with hidden layers {hidden_layers} on device: {DEVICE}")
return model
def plot_learning_curve(train_losses, val_losses):
plt.figure(figsize=(10, 6))
epochs = range(1, len(train_losses) + 1)
plt.plot(epochs, train_losses, 'b-', label='Training Loss')
plt.plot(epochs, val_losses, 'r-', label='Validation Loss')
plt.title('Learning Curve')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.grid(True)
os.makedirs('plots', exist_ok=True)
plt.savefig('plots/learning_curve.png')
plt.close()
print("Learning curve saved to plots/learning_curve.png")
def plot_accuracy_curve(train_accuracies, val_accuracies):
plt.figure(figsize=(10, 6))
epochs = range(1, len(train_accuracies) + 1)
plt.plot(epochs, train_accuracies, 'g-', label='Training Accuracy')
plt.plot(epochs, val_accuracies, 'm-', label='Validation Accuracy')
plt.title('Accuracy Curve')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.grid(True)
plt.ylim(0, 1.0)
os.makedirs('plots', exist_ok=True)
plt.savefig('plots/accuracy_curve.png')
plt.close()
print("Accuracy curve saved to plots/accuracy_curve.png")
def select_features(df, feature_config):
features_df = pd.DataFrame()
if feature_config.get('basic_scores', True):
if 'score_chat' in df.columns:
features_df['score_chat'] = df['score_chat']
if 'score_coder' in df.columns:
features_df['score_coder'] = df['score_coder']
if 'text_analysis' in df.columns:
if feature_config.get('basic_text_stats'):
for feature in feature_config['basic_text_stats']:
features_df[f'basic_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('basic_stats', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('morphological'):
for feature in feature_config['morphological']:
if feature == 'pos_distribution':
pos_types = ['NOUN', 'VERB', 'ADJ', 'ADV', 'PROPN', 'DET', 'ADP', 'PRON', 'CCONJ', 'SCONJ']
for pos in pos_types:
features_df[f'pos_{pos}'] = df['text_analysis'].apply(
lambda x: x.get('morphological_analysis', {}).get('pos_distribution', {}).get(pos, 0)
if isinstance(x, dict) else 0
)
else:
features_df[f'morph_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('morphological_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('syntactic'):
for feature in feature_config['syntactic']:
if feature == 'dependencies':
dep_types = ['nsubj', 'obj', 'amod', 'nmod', 'ROOT', 'punct', 'case']
for dep in dep_types:
features_df[f'dep_{dep}'] = df['text_analysis'].apply(
lambda x: x.get('syntactic_analysis', {}).get('dependencies', {}).get(dep, 0)
if isinstance(x, dict) else 0
)
else:
features_df[f'synt_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('syntactic_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('entities'):
for feature in feature_config['entities']:
if feature == 'entity_types':
entity_types = ['PER', 'LOC', 'ORG']
for ent in entity_types:
features_df[f'ent_{ent}'] = df['text_analysis'].apply(
lambda x: x.get('named_entities', {}).get('entity_types', {}).get(ent, 0)
if isinstance(x, dict) else 0
)
else:
features_df[f'ent_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('named_entities', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('diversity'):
for feature in feature_config['diversity']:
features_df[f'div_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('lexical_diversity', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('structure'):
for feature in feature_config['structure']:
features_df[f'struct_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('text_structure', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('readability'):
for feature in feature_config['readability']:
features_df[f'read_{feature}'] = df['text_analysis'].apply(
lambda x: x.get('readability', {}).get(feature, 0) if isinstance(x, dict) else 0
)
if feature_config.get('semantic'):
features_df['semantic_coherence'] = df['text_analysis'].apply(
lambda x: x.get('semantic_coherence', {}).get('avg_coherence_score', 0) if isinstance(x, dict) else 0
)
print(f"Generated {len(features_df.columns)} features")
return features_df
def train_neural_network(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
model_config=None,
feature_config=None,
random_state=42):
if model_config is None:
model_config = {
'hidden_layers': [128, 96, 64, 32],
'dropout_rate': 0.1
}
if feature_config is None:
feature_config = {
'basic_scores': True,
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
'syntactic': ['dependencies', 'noun_chunks'],
'entities': ['total_entities', 'entity_types'],
'diversity': ['ttr', 'mtld'],
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
'semantic': True
}
df = load_data_from_json(directory_path)
features_df = select_features(df, feature_config)
print(f"Selected features: {features_df.columns.tolist()}")
imputer = SimpleImputer(strategy='mean')
X = imputer.fit_transform(features_df)
y = df['label'].values
print(f"Final data size after NaN processing: {X.shape}")
print(f"Labels distribution: {pd.Series(y).value_counts().to_dict()}")
label_encoder = LabelEncoder()
y_encoded = label_encoder.fit_transform(y)
X_train, X_test, y_train, y_test = train_test_split(
X, y_encoded, test_size=0.2, random_state=random_state
)
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=0.2, random_state=random_state
)
scaler = StandardScaler()
X_train_scaled = scaler.fit_transform(X_train)
X_val_scaled = scaler.transform(X_val)
X_test_scaled = scaler.transform(X_test)
X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
X_val_tensor = torch.FloatTensor(X_val_scaled).to(DEVICE)
y_val_tensor = torch.LongTensor(y_val).to(DEVICE)
X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
num_classes = len(label_encoder.classes_)
model = build_neural_network(X_train_scaled.shape[1], num_classes,
hidden_layers=model_config['hidden_layers'])
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
num_epochs = 100
best_loss = float('inf')
patience = 10
patience_counter = 0
best_model_state = None
train_losses = []
val_losses = []
train_accuracies = []
val_accuracies = []
for epoch in range(num_epochs):
model.train()
running_loss = 0.0
correct_train = 0
total_train = 0
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
_, predicted = torch.max(outputs.data, 1)
total_train += labels.size(0)
correct_train += (predicted == labels).sum().item()
epoch_loss = running_loss / len(train_loader.dataset)
train_losses.append(epoch_loss)
train_accuracy = correct_train / total_train
train_accuracies.append(train_accuracy)
model.eval()
with torch.no_grad():
val_outputs = model(X_val_tensor)
val_loss = criterion(val_outputs, y_val_tensor)
val_losses.append(val_loss.item())
_, predicted_val = torch.max(val_outputs.data, 1)
val_accuracy = (predicted_val == y_val_tensor).sum().item() / len(y_val_tensor)
val_accuracies.append(val_accuracy)
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {epoch_loss:.4f}, Acc: {train_accuracy:.4f}, Val Loss: {val_loss:.4f}, Val Acc: {val_accuracy:.4f}")
if val_loss < best_loss:
best_loss = val_loss
patience_counter = 0
best_model_state = model.state_dict().copy()
else:
patience_counter += 1
if patience_counter >= patience:
print(f"Early stopping at epoch {epoch+1}")
break
plot_learning_curve(train_losses, val_losses)
plot_accuracy_curve(train_accuracies, val_accuracies)
if best_model_state:
model.load_state_dict(best_model_state)
model.eval()
with torch.no_grad():
y_pred_prob = model(X_test_tensor)
y_pred = torch.argmax(y_pred_prob, dim=1).cpu().numpy()
accuracy = accuracy_score(y_test, y_pred)
print(f"Model accuracy: {accuracy:.6f}")
class_names = label_encoder.classes_
print("\nClassification report:")
print(classification_report(y_test, y_pred, target_names=class_names))
return model, scaler, label_encoder, accuracy
def save_model(model, scaler, label_encoder, imputer, output_dir='models/neural_network'):
if not os.path.exists(output_dir):
os.makedirs(output_dir)
model_path = os.path.join(output_dir, 'nn_model.pt')
torch.save(model.state_dict(), model_path)
scaler_path = os.path.join(output_dir, 'scaler.joblib')
joblib.dump(scaler, scaler_path)
encoder_path = os.path.join(output_dir, 'label_encoder.joblib')
joblib.dump(label_encoder, encoder_path)
imputer_path = os.path.join(output_dir, 'imputer.joblib')
joblib.dump(imputer, imputer_path)
print(f"Model saved to {model_path}")
print(f"Scaler saved to {scaler_path}")
print(f"Label encoder saved to {encoder_path}")
print(f"Imputer saved to {imputer_path}")
return model_path, scaler_path, encoder_path, imputer_path
def evaluate_statistical_significance(X, y, model_config, scaler, label_encoder, cv=5, random_state=42, cv_epochs=15):
print("Starting statistical significance evaluation...")
skf = StratifiedKFold(n_splits=cv, shuffle=True, random_state=random_state)
cv_scores = []
all_y_true = []
all_y_pred = []
class_counts = np.bincount(y)
baseline_accuracy = np.max(class_counts) / len(y)
most_frequent_class = np.argmax(class_counts)
print(f"Baseline (most frequent class) accuracy: {baseline_accuracy:.4f}")
print(f"Most frequent class: {label_encoder.inverse_transform([most_frequent_class])[0]}")
fold = 1
for train_idx, test_idx in skf.split(X, y):
print(f"\nTraining fold {fold}/{cv}...")
X_train_fold, X_test_fold = X[train_idx], X[test_idx]
y_train_fold, y_test_fold = y[train_idx], y[test_idx]
X_train_scaled = scaler.transform(X_train_fold)
X_test_scaled = scaler.transform(X_test_fold)
X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
y_train_tensor = torch.LongTensor(y_train_fold).to(DEVICE)
X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
input_size = X_train_scaled.shape[1]
num_classes = len(np.unique(y))
model = build_neural_network(input_size, num_classes, hidden_layers=model_config['hidden_layers'])
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
model.train()
for epoch in range(cv_epochs):
for inputs, labels in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
model.eval()
with torch.no_grad():
outputs = model(X_test_tensor)
_, predicted = torch.max(outputs.data, 1)
predicted_np = predicted.cpu().numpy()
fold_accuracy = (predicted_np == y_test_fold).mean()
cv_scores.append(fold_accuracy)
all_y_true.extend(y_test_fold)
all_y_pred.extend(predicted_np)
print(f"Fold {fold} accuracy: {fold_accuracy:.4f}")
fold += 1
cv_scores = np.array(cv_scores)
mean_accuracy = cv_scores.mean()
std_accuracy = cv_scores.std()
ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(cv)
ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(cv)
t_stat, p_value = stats.ttest_1samp(cv_scores, baseline_accuracy)
results = {
'cv_scores': [float(score) for score in cv_scores.tolist()],
'mean_accuracy': float(mean_accuracy),
'std_accuracy': float(std_accuracy),
'confidence_interval_95': [float(ci_lower), float(ci_upper)],
'baseline_accuracy': float(baseline_accuracy),
't_statistic': float(t_stat),
'p_value': float(p_value),
'statistically_significant': "yes" if p_value < 0.05 else "no"
}
print("\nStatistical Significance Results:")
print(f"Cross-validation accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
print(f"95% confidence interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
print(f"Baseline accuracy (most frequent class): {baseline_accuracy:.4f}")
print(f"t-statistic: {t_stat:.4f}, p-value: {p_value:.6f}")
if p_value < 0.05:
print("The model is significantly better than the baseline (p < 0.05)")
else:
print("The model is NOT significantly better than the baseline (p >= 0.05)")
class_names = label_encoder.classes_
cm = pd.crosstab(
pd.Series(all_y_true, name='Actual'),
pd.Series(all_y_pred, name='Predicted'),
normalize='index'
)
cm.index = [class_names[i] for i in range(len(class_names))]
cm.columns = [class_names[i] for i in range(len(class_names))]
plt.figure(figsize=(10, 8))
sns.heatmap(cm, annot=True, fmt='.2f', cmap='Blues')
plt.title('Normalized Confusion Matrix (Cross-Validation)')
plt.ylabel('True Label')
plt.xlabel('Predicted Label')
os.makedirs('plots', exist_ok=True)
plt.savefig('plots/confusion_matrix_cv.png')
plt.close()
print("Confusion matrix saved to plots/confusion_matrix_cv.png")
return results
def parse_args():
parser = argparse.ArgumentParser(description='Neural Network Classifier with Statistical Significance Testing')
parser.add_argument('--random_seed', type=int, default=None,
help='Random seed for reproducibility. If not provided, a random seed will be generated.')
parser.add_argument('--multiple_runs', type=int, default=1,
help='Number of runs with different random seeds')
return parser.parse_args()
def main():
args = parse_args()
if args.random_seed is None:
seed = int(time.time() * 1000) % 10000
print(f"Using random seed: {seed}")
else:
seed = args.random_seed
print(f"Using provided seed: {seed}")
all_run_results = []
for run in range(args.multiple_runs):
if args.multiple_runs > 1:
current_seed = seed + run
print(f"\n\nRun {run+1}/{args.multiple_runs} with seed {current_seed}\n")
else:
current_seed = seed
np.random.seed(current_seed)
torch.manual_seed(current_seed)
if GPU_AVAILABLE:
torch.cuda.manual_seed_all(current_seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
plt.switch_backend('agg')
model_config = {
'hidden_layers': [128, 96, 64, 32],
'dropout_rate': 0.1
}
feature_config = {
'basic_scores': True,
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
'syntactic': ['dependencies', 'noun_chunks'],
'entities': ['total_entities', 'entity_types'],
'diversity': ['ttr', 'mtld'],
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
'semantic': True
}
model, scaler, label_encoder, accuracy = train_neural_network(
directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
model_config=model_config,
feature_config=feature_config,
random_state=current_seed
)
print("\nPerforming statistical significance testing...")
df = load_data_from_json("experiments/results/two_scores_with_long_text_analyze_2048T")
features_df = select_features(df, feature_config)
imputer = SimpleImputer(strategy='mean')
X = imputer.fit_transform(features_df)
y = df['label'].values
y_encoded = label_encoder.transform(y)
significance_results = evaluate_statistical_significance(
X, y_encoded, model_config, scaler, label_encoder, cv=5, random_state=current_seed
)
run_info = {
'run_id': run + 1,
'seed': current_seed,
'accuracy': float(accuracy),
'statistical_significance': significance_results
}
all_run_results.append(run_info)
output_dir = f'models/neural_network/run_{run+1}_seed_{current_seed}'
os.makedirs(output_dir, exist_ok=True)
with open(f'{output_dir}/statistical_results.json', 'w') as f:
json.dump(significance_results, f, indent=4)
save_model(model, scaler, label_encoder, imputer, output_dir='models/neural_network')
if args.multiple_runs > 1:
accuracy_values = [run['accuracy'] for run in all_run_results]
mean_accuracy = np.mean(accuracy_values)
std_accuracy = np.std(accuracy_values)
print("\n" + "="*60)
print(f"SUMMARY OF {args.multiple_runs} RUNS")
print("="*60)
print(f"Mean accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
print(f"Min accuracy: {min(accuracy_values):.4f}, Max accuracy: {max(accuracy_values):.4f}")
summary = {
'num_runs': args.multiple_runs,
'base_seed': seed,
'accuracy_mean': float(mean_accuracy),
'accuracy_std': float(std_accuracy),
'accuracy_min': float(min(accuracy_values)),
'accuracy_max': float(max(accuracy_values)),
'all_runs': all_run_results
}
with open('models/neural_network/multiple_runs_summary.json', 'w') as f:
json.dump(summary, f, indent=4)
print("Summary saved to models/neural_network/multiple_runs_summary.json")
if __name__ == "__main__":
main()