Spaces:
Running
on
Zero
Running
on
Zero
update
Browse files- .gitignore +2 -0
- NN_classifier/simple_binary_classifier.py +897 -0
.gitignore
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
__pycache__/model_utils.cpython-310.pyc
|
2 |
+
demo/__pycache__/binary_classifier_demo.cpython-310.pyc
|
NN_classifier/simple_binary_classifier.py
ADDED
@@ -0,0 +1,897 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import torch.nn as nn
|
5 |
+
import torch.optim as optim
|
6 |
+
from torch.utils.data import DataLoader, TensorDataset
|
7 |
+
from sklearn.model_selection import StratifiedKFold
|
8 |
+
from sklearn.metrics import classification_report, accuracy_score, roc_auc_score, precision_recall_fscore_support, confusion_matrix
|
9 |
+
from sklearn.preprocessing import StandardScaler, LabelEncoder
|
10 |
+
from sklearn.impute import SimpleImputer
|
11 |
+
import matplotlib.pyplot as plt
|
12 |
+
import json
|
13 |
+
import joblib
|
14 |
+
import os
|
15 |
+
import seaborn as sns
|
16 |
+
from scipy import stats
|
17 |
+
import time
|
18 |
+
import argparse
|
19 |
+
|
20 |
+
def setup_gpu():
|
21 |
+
if torch.cuda.is_available():
|
22 |
+
return True
|
23 |
+
else:
|
24 |
+
print("No GPUs found. Using CPU.")
|
25 |
+
return False
|
26 |
+
|
27 |
+
GPU_AVAILABLE = setup_gpu()
|
28 |
+
DEVICE = torch.device('cuda' if GPU_AVAILABLE else 'cpu')
|
29 |
+
|
30 |
+
def load_data_from_json(directory_path):
|
31 |
+
if os.path.isfile(directory_path):
|
32 |
+
directory = os.path.dirname(directory_path)
|
33 |
+
else:
|
34 |
+
directory = directory_path
|
35 |
+
|
36 |
+
print(f"Loading JSON files from directory: {directory}")
|
37 |
+
|
38 |
+
json_files = [os.path.join(directory, f) for f in os.listdir(directory)
|
39 |
+
if f.endswith('.json') and os.path.isfile(os.path.join(directory, f))]
|
40 |
+
|
41 |
+
if not json_files:
|
42 |
+
raise ValueError(f"No JSON files found in directory {directory}")
|
43 |
+
|
44 |
+
print(f"Found {len(json_files)} JSON files")
|
45 |
+
|
46 |
+
all_data = []
|
47 |
+
for file_path in json_files:
|
48 |
+
try:
|
49 |
+
with open(file_path, 'r', encoding='utf-8') as f:
|
50 |
+
data_dict = json.load(f)
|
51 |
+
if 'data' in data_dict:
|
52 |
+
all_data.extend(data_dict['data'])
|
53 |
+
else:
|
54 |
+
print(f"Warning: 'data' key not found in {os.path.basename(file_path)}")
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error loading {os.path.basename(file_path)}: {str(e)}")
|
57 |
+
|
58 |
+
if not all_data:
|
59 |
+
raise ValueError("Failed to load data from JSON files")
|
60 |
+
|
61 |
+
df = pd.DataFrame(all_data)
|
62 |
+
|
63 |
+
label_mapping = {
|
64 |
+
'ai': 'AI',
|
65 |
+
'human': 'Human',
|
66 |
+
'ai+rew': 'AI',
|
67 |
+
}
|
68 |
+
|
69 |
+
if 'source' in df.columns:
|
70 |
+
df['label'] = df['source'].map(lambda x: label_mapping.get(x, x))
|
71 |
+
else:
|
72 |
+
print("Warning: 'source' column not found, using default label")
|
73 |
+
df['label'] = 'Unknown'
|
74 |
+
|
75 |
+
valid_labels = ['AI', 'Human']
|
76 |
+
df = df[df['label'].isin(valid_labels)]
|
77 |
+
|
78 |
+
print(f"Filtered to {len(df)} examples with labels: {valid_labels}")
|
79 |
+
print(f"Label distribution: {df['label'].value_counts().to_dict()}")
|
80 |
+
|
81 |
+
return df
|
82 |
+
|
83 |
+
class Medium_Binary_Network(nn.Module):
|
84 |
+
def __init__(self, input_size, hidden_sizes=[256, 128, 64, 32], dropout=0.3):
|
85 |
+
super(Medium_Binary_Network, self).__init__()
|
86 |
+
|
87 |
+
layers = []
|
88 |
+
prev_size = input_size
|
89 |
+
|
90 |
+
for hidden_size in hidden_sizes:
|
91 |
+
layers.append(nn.Linear(prev_size, hidden_size))
|
92 |
+
layers.append(nn.ReLU())
|
93 |
+
layers.append(nn.Dropout(dropout))
|
94 |
+
prev_size = hidden_size
|
95 |
+
|
96 |
+
layers.append(nn.Linear(prev_size, 2))
|
97 |
+
|
98 |
+
self.model = nn.Sequential(*layers)
|
99 |
+
|
100 |
+
def forward(self, x):
|
101 |
+
return self.model(x)
|
102 |
+
|
103 |
+
def cross_validate_simple_classifier(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
|
104 |
+
feature_config=None,
|
105 |
+
n_splits=5,
|
106 |
+
random_state=42,
|
107 |
+
epochs=100,
|
108 |
+
hidden_sizes=[256, 128, 64, 32],
|
109 |
+
dropout=0.3,
|
110 |
+
early_stopping_patience=10):
|
111 |
+
print("\n" + "="*50)
|
112 |
+
print("MEDIUM BINARY CLASSIFIER CROSS-VALIDATION")
|
113 |
+
print("="*50)
|
114 |
+
|
115 |
+
if feature_config is None:
|
116 |
+
feature_config = {
|
117 |
+
'basic_scores': True,
|
118 |
+
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
|
119 |
+
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
|
120 |
+
'syntactic': ['dependencies', 'noun_chunks'],
|
121 |
+
'entities': ['total_entities', 'entity_types'],
|
122 |
+
'diversity': ['ttr', 'mtld'],
|
123 |
+
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
|
124 |
+
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
|
125 |
+
'semantic': True
|
126 |
+
}
|
127 |
+
|
128 |
+
df = load_data_from_json(directory_path)
|
129 |
+
|
130 |
+
features_df = select_features(df, feature_config)
|
131 |
+
print(f"Selected {len(features_df.columns)} features")
|
132 |
+
|
133 |
+
imputer = SimpleImputer(strategy='mean')
|
134 |
+
X = imputer.fit_transform(features_df)
|
135 |
+
|
136 |
+
label_encoder = LabelEncoder()
|
137 |
+
y = label_encoder.fit_transform(df['label'].values)
|
138 |
+
|
139 |
+
skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=random_state)
|
140 |
+
|
141 |
+
fold_metrics = []
|
142 |
+
fold_models = []
|
143 |
+
|
144 |
+
all_train_losses = []
|
145 |
+
all_val_losses = []
|
146 |
+
all_train_accs = []
|
147 |
+
all_val_accs = []
|
148 |
+
|
149 |
+
all_y_true = []
|
150 |
+
all_y_pred = []
|
151 |
+
|
152 |
+
best_fold_score = -1
|
153 |
+
best_fold_index = -1
|
154 |
+
|
155 |
+
for fold, (train_idx, test_idx) in enumerate(skf.split(X, y)):
|
156 |
+
print(f"\n{'='*20} Fold {fold+1}/{n_splits} {'='*20}")
|
157 |
+
|
158 |
+
X_train, X_test = X[train_idx], X[test_idx]
|
159 |
+
y_train, y_test = y[train_idx], y[test_idx]
|
160 |
+
|
161 |
+
scaler = StandardScaler()
|
162 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
163 |
+
X_test_scaled = scaler.transform(X_test)
|
164 |
+
|
165 |
+
X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
|
166 |
+
y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
|
167 |
+
X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
|
168 |
+
y_test_tensor = torch.LongTensor(y_test).to(DEVICE)
|
169 |
+
|
170 |
+
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
171 |
+
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)
|
172 |
+
|
173 |
+
model = Medium_Binary_Network(X_train_scaled.shape[1], hidden_sizes=hidden_sizes, dropout=dropout).to(DEVICE)
|
174 |
+
print(f"Model created with {len(hidden_sizes)} hidden layers: {hidden_sizes}")
|
175 |
+
|
176 |
+
criterion = nn.CrossEntropyLoss()
|
177 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
|
178 |
+
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=5, verbose=True)
|
179 |
+
|
180 |
+
best_val_loss = float('inf')
|
181 |
+
patience_counter = 0
|
182 |
+
best_model_state = None
|
183 |
+
|
184 |
+
train_losses = []
|
185 |
+
val_losses = []
|
186 |
+
train_accs = []
|
187 |
+
val_accs = []
|
188 |
+
|
189 |
+
for epoch in range(epochs):
|
190 |
+
model.train()
|
191 |
+
running_loss = 0.0
|
192 |
+
running_corrects = 0
|
193 |
+
|
194 |
+
for inputs, labels in train_loader:
|
195 |
+
optimizer.zero_grad()
|
196 |
+
outputs = model(inputs)
|
197 |
+
loss = criterion(outputs, labels)
|
198 |
+
loss.backward()
|
199 |
+
optimizer.step()
|
200 |
+
|
201 |
+
_, preds = torch.max(outputs, 1)
|
202 |
+
running_loss += loss.item() * inputs.size(0)
|
203 |
+
running_corrects += torch.sum(preds == labels).item()
|
204 |
+
|
205 |
+
epoch_loss = running_loss / len(train_loader.dataset)
|
206 |
+
epoch_acc = running_corrects / len(train_loader.dataset)
|
207 |
+
train_losses.append(epoch_loss)
|
208 |
+
train_accs.append(epoch_acc)
|
209 |
+
|
210 |
+
model.eval()
|
211 |
+
with torch.no_grad():
|
212 |
+
val_outputs = model(X_test_tensor)
|
213 |
+
val_loss = criterion(val_outputs, y_test_tensor)
|
214 |
+
val_losses.append(val_loss.item())
|
215 |
+
|
216 |
+
_, val_preds = torch.max(val_outputs, 1)
|
217 |
+
val_acc = torch.sum(val_preds == y_test_tensor).item() / len(y_test_tensor)
|
218 |
+
val_accs.append(val_acc)
|
219 |
+
|
220 |
+
if val_loss < best_val_loss:
|
221 |
+
best_val_loss = val_loss
|
222 |
+
patience_counter = 0
|
223 |
+
best_model_state = model.state_dict().copy()
|
224 |
+
else:
|
225 |
+
patience_counter += 1
|
226 |
+
|
227 |
+
if patience_counter >= early_stopping_patience:
|
228 |
+
print(f"Early stopping at epoch {epoch+1}")
|
229 |
+
break
|
230 |
+
|
231 |
+
scheduler.step(val_loss)
|
232 |
+
|
233 |
+
if (epoch + 1) % 10 == 0 or epoch == 0:
|
234 |
+
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_loss:.4f}, Train Acc: {epoch_acc:.4f}, Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.4f}")
|
235 |
+
|
236 |
+
if best_model_state:
|
237 |
+
model.load_state_dict(best_model_state)
|
238 |
+
print("Loaded best model weights")
|
239 |
+
|
240 |
+
model.eval()
|
241 |
+
with torch.no_grad():
|
242 |
+
test_outputs = model(X_test_tensor)
|
243 |
+
_, predicted = torch.max(test_outputs, 1)
|
244 |
+
test_acc = torch.sum(predicted == y_test_tensor).item() / len(y_test_tensor)
|
245 |
+
|
246 |
+
y_test_np = y_test
|
247 |
+
predicted_np = predicted.cpu().numpy()
|
248 |
+
|
249 |
+
all_y_true.extend(y_test_np)
|
250 |
+
all_y_pred.extend(predicted_np)
|
251 |
+
|
252 |
+
precision, recall, f1, _ = precision_recall_fscore_support(y_test_np, predicted_np, average='weighted')
|
253 |
+
|
254 |
+
fold_metric = {
|
255 |
+
'fold': fold + 1,
|
256 |
+
'accuracy': float(test_acc),
|
257 |
+
'precision': float(precision),
|
258 |
+
'recall': float(recall),
|
259 |
+
'f1': float(f1),
|
260 |
+
'val_loss': float(best_val_loss)
|
261 |
+
}
|
262 |
+
|
263 |
+
fold_metrics.append(fold_metric)
|
264 |
+
|
265 |
+
fold_models.append({
|
266 |
+
'model': model,
|
267 |
+
'scaler': scaler,
|
268 |
+
'label_encoder': label_encoder,
|
269 |
+
'imputer': imputer,
|
270 |
+
'score': test_acc
|
271 |
+
})
|
272 |
+
|
273 |
+
if test_acc > best_fold_score:
|
274 |
+
best_fold_score = test_acc
|
275 |
+
best_fold_index = fold
|
276 |
+
|
277 |
+
all_train_losses.extend(train_losses)
|
278 |
+
all_val_losses.extend(val_losses)
|
279 |
+
all_train_accs.extend(train_accs)
|
280 |
+
all_val_accs.extend(val_accs)
|
281 |
+
|
282 |
+
print(f"Fold {fold+1} Results:")
|
283 |
+
print(f" Accuracy: {test_acc:.4f}")
|
284 |
+
print(f" Precision: {precision:.4f}")
|
285 |
+
print(f" Recall: {recall:.4f}")
|
286 |
+
print(f" F1 Score: {f1:.4f}")
|
287 |
+
|
288 |
+
overall_accuracy = accuracy_score(all_y_true, all_y_pred)
|
289 |
+
overall_precision, overall_recall, overall_f1, _ = precision_recall_fscore_support(
|
290 |
+
all_y_true, all_y_pred, average='weighted'
|
291 |
+
)
|
292 |
+
|
293 |
+
fold_accuracies = [metrics['accuracy'] for metrics in fold_metrics]
|
294 |
+
mean_accuracy = np.mean(fold_accuracies)
|
295 |
+
std_accuracy = np.std(fold_accuracies)
|
296 |
+
|
297 |
+
ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(n_splits)
|
298 |
+
ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(n_splits)
|
299 |
+
|
300 |
+
plot_learning_curve(all_train_losses, all_val_losses)
|
301 |
+
plot_accuracy_curve(all_train_accs, all_val_accs)
|
302 |
+
|
303 |
+
class_names = label_encoder.classes_
|
304 |
+
cm = confusion_matrix(all_y_true, all_y_pred)
|
305 |
+
plt.figure(figsize=(10, 8))
|
306 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
307 |
+
xticklabels=class_names,
|
308 |
+
yticklabels=class_names)
|
309 |
+
plt.title('Binary Classification Confusion Matrix (Cross-Validation)')
|
310 |
+
plt.ylabel('True Label')
|
311 |
+
plt.xlabel('Predicted Label')
|
312 |
+
os.makedirs('plots/binary', exist_ok=True)
|
313 |
+
plt.savefig('plots/binary/confusion_matrix_medium.png')
|
314 |
+
plt.close()
|
315 |
+
|
316 |
+
print("\n" + "="*50)
|
317 |
+
print("CROSS-VALIDATION SUMMARY")
|
318 |
+
print("="*50)
|
319 |
+
print(f"Mean Accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
|
320 |
+
print(f"95% Confidence Interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
|
321 |
+
print(f"Overall Accuracy: {overall_accuracy:.4f}")
|
322 |
+
print(f"Overall Precision: {overall_precision:.4f}")
|
323 |
+
print(f"Overall Recall: {overall_recall:.4f}")
|
324 |
+
print(f"Overall F1: {overall_f1:.4f}")
|
325 |
+
|
326 |
+
print(f"\nBest Fold: {best_fold_index + 1} (Accuracy: {fold_metrics[best_fold_index]['accuracy']:.4f})")
|
327 |
+
|
328 |
+
best_model_data = fold_models[best_fold_index]
|
329 |
+
|
330 |
+
results = {
|
331 |
+
'fold_metrics': fold_metrics,
|
332 |
+
'overall': {
|
333 |
+
'accuracy': float(overall_accuracy),
|
334 |
+
'precision': float(overall_precision),
|
335 |
+
'recall': float(overall_recall),
|
336 |
+
'f1': float(overall_f1)
|
337 |
+
},
|
338 |
+
'cross_validation': {
|
339 |
+
'mean_accuracy': float(mean_accuracy),
|
340 |
+
'std_accuracy': float(std_accuracy),
|
341 |
+
'confidence_interval_95': [float(ci_lower), float(ci_upper)]
|
342 |
+
},
|
343 |
+
'best_fold': {
|
344 |
+
'fold': best_fold_index + 1,
|
345 |
+
'accuracy': float(fold_metrics[best_fold_index]['accuracy'])
|
346 |
+
},
|
347 |
+
'model_config': {
|
348 |
+
'hidden_sizes': hidden_sizes,
|
349 |
+
'dropout': dropout
|
350 |
+
}
|
351 |
+
}
|
352 |
+
|
353 |
+
output_dir = 'models/medium_binary_classifier'
|
354 |
+
save_paths = save_binary_model(best_model_data, results, output_dir=output_dir)
|
355 |
+
|
356 |
+
return best_model_data, results, save_paths
|
357 |
+
|
358 |
+
def plot_learning_curve(train_losses, val_losses):
|
359 |
+
plt.figure(figsize=(10, 6))
|
360 |
+
epochs = range(1, len(train_losses) + 1)
|
361 |
+
|
362 |
+
plt.plot(epochs, train_losses, 'b-', label='Training Loss')
|
363 |
+
plt.plot(epochs, val_losses, 'r-', label='Validation Loss')
|
364 |
+
|
365 |
+
plt.title('Learning Curve')
|
366 |
+
plt.xlabel('Epochs')
|
367 |
+
plt.ylabel('Loss')
|
368 |
+
plt.legend()
|
369 |
+
plt.grid(True)
|
370 |
+
|
371 |
+
os.makedirs('plots/binary', exist_ok=True)
|
372 |
+
plt.savefig('plots/binary/learning_curve.png')
|
373 |
+
plt.close()
|
374 |
+
print("Learning curve saved to plots/binary/learning_curve.png")
|
375 |
+
|
376 |
+
def plot_accuracy_curve(train_accuracies, val_accuracies):
|
377 |
+
plt.figure(figsize=(10, 6))
|
378 |
+
epochs = range(1, len(train_accuracies) + 1)
|
379 |
+
|
380 |
+
plt.plot(epochs, train_accuracies, 'g-', label='Training Accuracy')
|
381 |
+
plt.plot(epochs, val_accuracies, 'm-', label='Validation Accuracy')
|
382 |
+
|
383 |
+
plt.title('Accuracy Curve')
|
384 |
+
plt.xlabel('Epochs')
|
385 |
+
plt.ylabel('Accuracy')
|
386 |
+
plt.legend()
|
387 |
+
plt.grid(True)
|
388 |
+
|
389 |
+
plt.ylim(0, 1.0)
|
390 |
+
|
391 |
+
os.makedirs('plots/binary', exist_ok=True)
|
392 |
+
plt.savefig('plots/binary/accuracy_curve.png')
|
393 |
+
plt.close()
|
394 |
+
print("Accuracy curve saved to plots/binary/accuracy_curve.png")
|
395 |
+
|
396 |
+
def select_features(df, feature_config):
|
397 |
+
features_df = pd.DataFrame()
|
398 |
+
|
399 |
+
if feature_config.get('basic_scores', True):
|
400 |
+
if 'score_chat' in df.columns:
|
401 |
+
features_df['score_chat'] = df['score_chat']
|
402 |
+
if 'score_coder' in df.columns:
|
403 |
+
features_df['score_coder'] = df['score_coder']
|
404 |
+
|
405 |
+
if 'text_analysis' in df.columns:
|
406 |
+
if feature_config.get('basic_text_stats'):
|
407 |
+
for feature in feature_config['basic_text_stats']:
|
408 |
+
features_df[f'basic_{feature}'] = df['text_analysis'].apply(
|
409 |
+
lambda x: x.get('basic_stats', {}).get(feature, 0) if isinstance(x, dict) else 0
|
410 |
+
)
|
411 |
+
|
412 |
+
if feature_config.get('morphological'):
|
413 |
+
for feature in feature_config['morphological']:
|
414 |
+
if feature == 'pos_distribution':
|
415 |
+
pos_types = ['NOUN', 'VERB', 'ADJ', 'ADV', 'PROPN', 'DET', 'ADP', 'PRON', 'CCONJ', 'SCONJ']
|
416 |
+
for pos in pos_types:
|
417 |
+
features_df[f'pos_{pos}'] = df['text_analysis'].apply(
|
418 |
+
lambda x: x.get('morphological_analysis', {}).get('pos_distribution', {}).get(pos, 0)
|
419 |
+
if isinstance(x, dict) else 0
|
420 |
+
)
|
421 |
+
else:
|
422 |
+
features_df[f'morph_{feature}'] = df['text_analysis'].apply(
|
423 |
+
lambda x: x.get('morphological_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
|
424 |
+
)
|
425 |
+
|
426 |
+
if feature_config.get('syntactic'):
|
427 |
+
for feature in feature_config['syntactic']:
|
428 |
+
if feature == 'dependencies':
|
429 |
+
dep_types = ['nsubj', 'obj', 'amod', 'nmod', 'ROOT', 'punct', 'case']
|
430 |
+
for dep in dep_types:
|
431 |
+
features_df[f'dep_{dep}'] = df['text_analysis'].apply(
|
432 |
+
lambda x: x.get('syntactic_analysis', {}).get('dependencies', {}).get(dep, 0)
|
433 |
+
if isinstance(x, dict) else 0
|
434 |
+
)
|
435 |
+
else:
|
436 |
+
features_df[f'synt_{feature}'] = df['text_analysis'].apply(
|
437 |
+
lambda x: x.get('syntactic_analysis', {}).get(feature, 0) if isinstance(x, dict) else 0
|
438 |
+
)
|
439 |
+
|
440 |
+
if feature_config.get('entities'):
|
441 |
+
for feature in feature_config['entities']:
|
442 |
+
if feature == 'entity_types':
|
443 |
+
entity_types = ['PER', 'LOC', 'ORG']
|
444 |
+
for ent in entity_types:
|
445 |
+
features_df[f'ent_{ent}'] = df['text_analysis'].apply(
|
446 |
+
lambda x: x.get('named_entities', {}).get('entity_types', {}).get(ent, 0)
|
447 |
+
if isinstance(x, dict) else 0
|
448 |
+
)
|
449 |
+
else:
|
450 |
+
features_df[f'ent_{feature}'] = df['text_analysis'].apply(
|
451 |
+
lambda x: x.get('named_entities', {}).get(feature, 0) if isinstance(x, dict) else 0
|
452 |
+
)
|
453 |
+
|
454 |
+
if feature_config.get('diversity'):
|
455 |
+
for feature in feature_config['diversity']:
|
456 |
+
features_df[f'div_{feature}'] = df['text_analysis'].apply(
|
457 |
+
lambda x: x.get('lexical_diversity', {}).get(feature, 0) if isinstance(x, dict) else 0
|
458 |
+
)
|
459 |
+
|
460 |
+
if feature_config.get('structure'):
|
461 |
+
for feature in feature_config['structure']:
|
462 |
+
features_df[f'struct_{feature}'] = df['text_analysis'].apply(
|
463 |
+
lambda x: x.get('text_structure', {}).get(feature, 0) if isinstance(x, dict) else 0
|
464 |
+
)
|
465 |
+
|
466 |
+
if feature_config.get('readability'):
|
467 |
+
for feature in feature_config['readability']:
|
468 |
+
features_df[f'read_{feature}'] = df['text_analysis'].apply(
|
469 |
+
lambda x: x.get('readability', {}).get(feature, 0) if isinstance(x, dict) else 0
|
470 |
+
)
|
471 |
+
|
472 |
+
if feature_config.get('semantic'):
|
473 |
+
features_df['semantic_coherence'] = df['text_analysis'].apply(
|
474 |
+
lambda x: x.get('semantic_coherence', {}).get('avg_coherence_score', 0) if isinstance(x, dict) else 0
|
475 |
+
)
|
476 |
+
|
477 |
+
print(f"Generated {len(features_df.columns)} features")
|
478 |
+
return features_df
|
479 |
+
|
480 |
+
def augment_text_features(features_df, num_augmentations=5, noise_factor=0.05):
|
481 |
+
augmented_dfs = [features_df]
|
482 |
+
|
483 |
+
for i in range(num_augmentations):
|
484 |
+
numeric_cols = features_df.select_dtypes(include=[np.number]).columns
|
485 |
+
augmented_df = features_df.copy()
|
486 |
+
for col in numeric_cols:
|
487 |
+
augmented_df[col] = augmented_df[col].astype(float)
|
488 |
+
|
489 |
+
noise = augmented_df[numeric_cols] * np.random.normal(0, noise_factor, size=augmented_df[numeric_cols].shape)
|
490 |
+
augmented_df[numeric_cols] += noise
|
491 |
+
augmented_dfs.append(augmented_df)
|
492 |
+
|
493 |
+
return pd.concat(augmented_dfs, ignore_index=True)
|
494 |
+
|
495 |
+
def cross_validate_binary_classifier(directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
|
496 |
+
model_config=None,
|
497 |
+
feature_config=None,
|
498 |
+
n_splits=5,
|
499 |
+
random_state=42,
|
500 |
+
epochs=100,
|
501 |
+
early_stopping_patience=10,
|
502 |
+
use_augmentation=True,
|
503 |
+
num_augmentations=2,
|
504 |
+
noise_factor=0.05):
|
505 |
+
if model_config is None:
|
506 |
+
model_config = {
|
507 |
+
'hidden_layers': [256, 128, 64],
|
508 |
+
'dropout_rate': 0.3
|
509 |
+
}
|
510 |
+
|
511 |
+
if feature_config is None:
|
512 |
+
feature_config = {
|
513 |
+
'basic_scores': True,
|
514 |
+
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
|
515 |
+
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
|
516 |
+
'syntactic': ['dependencies', 'noun_chunks'],
|
517 |
+
'entities': ['total_entities', 'entity_types'],
|
518 |
+
'diversity': ['ttr', 'mtld'],
|
519 |
+
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
|
520 |
+
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
|
521 |
+
'semantic': True
|
522 |
+
}
|
523 |
+
|
524 |
+
print("\n" + "="*50)
|
525 |
+
print("BINARY CLASSIFIER CROSS-VALIDATION")
|
526 |
+
print("="*50)
|
527 |
+
|
528 |
+
df = load_data_from_json(directory_path)
|
529 |
+
|
530 |
+
features_df = select_features(df, feature_config)
|
531 |
+
print(f"Selected features: {features_df.columns.tolist()}")
|
532 |
+
|
533 |
+
imputer = SimpleImputer(strategy='mean')
|
534 |
+
|
535 |
+
if use_augmentation:
|
536 |
+
print(f"Augmenting data with {num_augmentations} copies (noise factor: {noise_factor})...")
|
537 |
+
original_size = len(features_df)
|
538 |
+
features_df_augmented = augment_text_features(features_df,
|
539 |
+
num_augmentations=num_augmentations,
|
540 |
+
noise_factor=noise_factor)
|
541 |
+
y_augmented = np.tile(df['label'].values, num_augmentations + 1)
|
542 |
+
print(f"Data size increased from {original_size} to {len(features_df_augmented)}")
|
543 |
+
|
544 |
+
X = imputer.fit_transform(features_df_augmented)
|
545 |
+
y = y_augmented
|
546 |
+
else:
|
547 |
+
X = imputer.fit_transform(features_df)
|
548 |
+
y = df['label'].values
|
549 |
+
|
550 |
+
label_encoder = LabelEncoder()
|
551 |
+
y_encoded = label_encoder.fit_transform(y)
|
552 |
+
|
553 |
+
print(f"Data size: {X.shape}")
|
554 |
+
print(f"Labels distribution: {pd.Series(y).value_counts().to_dict()}")
|
555 |
+
|
556 |
+
skf = StratifiedKFold(n_splits=n_splits, shuffle=True, random_state=random_state)
|
557 |
+
|
558 |
+
fold_metrics = []
|
559 |
+
fold_models = []
|
560 |
+
all_y_true = []
|
561 |
+
all_y_pred = []
|
562 |
+
all_y_scores = []
|
563 |
+
|
564 |
+
best_fold_score = -1
|
565 |
+
best_fold_index = -1
|
566 |
+
|
567 |
+
print(f"\nPerforming {n_splits}-fold cross-validation...")
|
568 |
+
|
569 |
+
num_avg_epochs = 5
|
570 |
+
saved_weights = []
|
571 |
+
|
572 |
+
for fold, (train_idx, test_idx) in enumerate(skf.split(X, y_encoded)):
|
573 |
+
print(f"\n{'='*20} Fold {fold+1}/{n_splits} {'='*20}")
|
574 |
+
|
575 |
+
X_train, X_test = X[train_idx], X[test_idx]
|
576 |
+
y_train, y_test = y_encoded[train_idx], y_encoded[test_idx]
|
577 |
+
|
578 |
+
scaler = StandardScaler()
|
579 |
+
X_train_scaled = scaler.fit_transform(X_train)
|
580 |
+
X_test_scaled = scaler.transform(X_test)
|
581 |
+
|
582 |
+
X_train_tensor = torch.FloatTensor(X_train_scaled).to(DEVICE)
|
583 |
+
y_train_tensor = torch.LongTensor(y_train).to(DEVICE)
|
584 |
+
X_test_tensor = torch.FloatTensor(X_test_scaled).to(DEVICE)
|
585 |
+
y_test_tensor = torch.LongTensor(y_test).to(DEVICE)
|
586 |
+
|
587 |
+
train_dataset = TensorDataset(X_train_tensor, y_train_tensor)
|
588 |
+
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
|
589 |
+
|
590 |
+
num_classes = len(label_encoder.classes_)
|
591 |
+
model = build_neural_network(X_train_scaled.shape[1], num_classes,
|
592 |
+
hidden_layers=model_config['hidden_layers'])
|
593 |
+
|
594 |
+
criterion = nn.CrossEntropyLoss()
|
595 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=1e-5)
|
596 |
+
scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.95)
|
597 |
+
|
598 |
+
best_val_loss = float('inf')
|
599 |
+
patience_counter = 0
|
600 |
+
best_model_state = None
|
601 |
+
|
602 |
+
train_losses = []
|
603 |
+
val_losses = []
|
604 |
+
|
605 |
+
saved_weights = []
|
606 |
+
|
607 |
+
for epoch in range(epochs):
|
608 |
+
model.train()
|
609 |
+
running_loss = 0.0
|
610 |
+
|
611 |
+
for inputs, labels in train_loader:
|
612 |
+
optimizer.zero_grad()
|
613 |
+
outputs = model(inputs)
|
614 |
+
loss = criterion(outputs, labels)
|
615 |
+
loss.backward()
|
616 |
+
optimizer.step()
|
617 |
+
|
618 |
+
running_loss += loss.item() * inputs.size(0)
|
619 |
+
|
620 |
+
epoch_loss = running_loss / len(train_loader.dataset)
|
621 |
+
train_losses.append(epoch_loss)
|
622 |
+
|
623 |
+
model.eval()
|
624 |
+
with torch.no_grad():
|
625 |
+
val_outputs = model(X_test_tensor)
|
626 |
+
val_loss = criterion(val_outputs, y_test_tensor)
|
627 |
+
val_losses.append(val_loss.item())
|
628 |
+
|
629 |
+
if val_loss < best_val_loss:
|
630 |
+
best_val_loss = val_loss
|
631 |
+
patience_counter = 0
|
632 |
+
best_model_state = model.state_dict().copy()
|
633 |
+
else:
|
634 |
+
patience_counter += 1
|
635 |
+
|
636 |
+
if patience_counter >= early_stopping_patience:
|
637 |
+
print(f"Early stopping at epoch {epoch+1}")
|
638 |
+
break
|
639 |
+
|
640 |
+
if epoch >= epochs - num_avg_epochs:
|
641 |
+
saved_weights.append(model.state_dict().copy())
|
642 |
+
|
643 |
+
scheduler.step()
|
644 |
+
|
645 |
+
if (epoch + 1) % 10 == 0 or epoch == 0:
|
646 |
+
print(f"Epoch {epoch+1}/{epochs}, Train Loss: {epoch_loss:.4f}, Val Loss: {val_loss:.4f}")
|
647 |
+
|
648 |
+
if len(saved_weights) > 0:
|
649 |
+
print(f"Averaging weights from last {len(saved_weights)} epochs...")
|
650 |
+
avg_state_dict = saved_weights[0].copy()
|
651 |
+
for key in avg_state_dict.keys():
|
652 |
+
if epoch >= epochs - num_avg_epochs:
|
653 |
+
for i in range(1, len(saved_weights)):
|
654 |
+
avg_state_dict[key] += saved_weights[i][key]
|
655 |
+
avg_state_dict[key] /= len(saved_weights)
|
656 |
+
|
657 |
+
model.load_state_dict(avg_state_dict)
|
658 |
+
print("Model loaded with averaged weights")
|
659 |
+
elif best_model_state:
|
660 |
+
model.load_state_dict(best_model_state)
|
661 |
+
print("Model loaded with best validation weights")
|
662 |
+
|
663 |
+
model.eval()
|
664 |
+
with torch.no_grad():
|
665 |
+
test_outputs = model(X_test_tensor)
|
666 |
+
_, predicted = torch.max(test_outputs.data, 1)
|
667 |
+
predicted_np = predicted.cpu().numpy()
|
668 |
+
|
669 |
+
probabilities = torch.softmax(test_outputs, dim=1)
|
670 |
+
pos_scores = probabilities[:, 1].cpu().numpy()
|
671 |
+
|
672 |
+
all_y_true.extend(y_test)
|
673 |
+
all_y_pred.extend(predicted_np)
|
674 |
+
all_y_scores.extend(pos_scores)
|
675 |
+
|
676 |
+
fold_acc = accuracy_score(y_test, predicted_np)
|
677 |
+
precision, recall, f1, _ = precision_recall_fscore_support(y_test, predicted_np, average='weighted')
|
678 |
+
|
679 |
+
try:
|
680 |
+
fold_auc = roc_auc_score(y_test, pos_scores)
|
681 |
+
except:
|
682 |
+
fold_auc = 0.0
|
683 |
+
print("Warning: Could not compute AUC")
|
684 |
+
|
685 |
+
fold_metrics.append({
|
686 |
+
'fold': fold + 1,
|
687 |
+
'accuracy': float(fold_acc),
|
688 |
+
'precision': float(precision),
|
689 |
+
'recall': float(recall),
|
690 |
+
'f1': float(f1),
|
691 |
+
'auc': float(fold_auc),
|
692 |
+
'best_val_loss': float(best_val_loss)
|
693 |
+
})
|
694 |
+
|
695 |
+
fold_models.append({
|
696 |
+
'model': model,
|
697 |
+
'scaler': scaler,
|
698 |
+
'label_encoder': label_encoder,
|
699 |
+
'imputer': imputer,
|
700 |
+
'score': fold_acc
|
701 |
+
})
|
702 |
+
|
703 |
+
if fold_acc > best_fold_score:
|
704 |
+
best_fold_score = fold_acc
|
705 |
+
best_fold_index = fold
|
706 |
+
|
707 |
+
print(f"Fold {fold+1} Results:")
|
708 |
+
print(f" Accuracy: {fold_acc:.4f}")
|
709 |
+
print(f" Precision: {precision:.4f}")
|
710 |
+
print(f" Recall: {recall:.4f}")
|
711 |
+
print(f" F1 Score: {f1:.4f}")
|
712 |
+
if fold_auc > 0:
|
713 |
+
print(f" AUC: {fold_auc:.4f}")
|
714 |
+
|
715 |
+
overall_accuracy = accuracy_score(all_y_true, all_y_pred)
|
716 |
+
overall_precision, overall_recall, overall_f1, _ = precision_recall_fscore_support(
|
717 |
+
all_y_true, all_y_pred, average='weighted'
|
718 |
+
)
|
719 |
+
|
720 |
+
try:
|
721 |
+
overall_auc = roc_auc_score(all_y_true, all_y_scores)
|
722 |
+
except:
|
723 |
+
overall_auc = 0.0
|
724 |
+
print("Warning: Could not compute overall AUC")
|
725 |
+
|
726 |
+
fold_accuracies = [metrics['accuracy'] for metrics in fold_metrics]
|
727 |
+
mean_accuracy = np.mean(fold_accuracies)
|
728 |
+
std_accuracy = np.std(fold_accuracies)
|
729 |
+
|
730 |
+
ci_lower = mean_accuracy - 1.96 * std_accuracy / np.sqrt(n_splits)
|
731 |
+
ci_upper = mean_accuracy + 1.96 * std_accuracy / np.sqrt(n_splits)
|
732 |
+
|
733 |
+
class_counts = np.bincount(y_encoded)
|
734 |
+
baseline_accuracy = np.max(class_counts) / len(y_encoded)
|
735 |
+
most_frequent_class = np.argmax(class_counts)
|
736 |
+
|
737 |
+
t_stat, p_value = stats.ttest_1samp(fold_accuracies, baseline_accuracy)
|
738 |
+
|
739 |
+
best_model_data = fold_models[best_fold_index]
|
740 |
+
|
741 |
+
class_names = label_encoder.classes_
|
742 |
+
cm = confusion_matrix(all_y_true, all_y_pred)
|
743 |
+
plt.figure(figsize=(10, 8))
|
744 |
+
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues',
|
745 |
+
xticklabels=class_names,
|
746 |
+
yticklabels=class_names)
|
747 |
+
plt.title('Binary Classification Confusion Matrix (Cross-Validation)')
|
748 |
+
plt.ylabel('True Label')
|
749 |
+
plt.xlabel('Predicted Label')
|
750 |
+
os.makedirs('plots/binary', exist_ok=True)
|
751 |
+
plt.savefig('plots/binary/confusion_matrix_cv.png')
|
752 |
+
plt.close()
|
753 |
+
|
754 |
+
if overall_auc > 0:
|
755 |
+
from sklearn.metrics import roc_curve
|
756 |
+
fpr, tpr, _ = roc_curve(all_y_true, all_y_scores)
|
757 |
+
plt.figure(figsize=(10, 8))
|
758 |
+
plt.plot(fpr, tpr, lw=2, label=f'ROC curve (AUC = {overall_auc:.4f})')
|
759 |
+
plt.plot([0, 1], [0, 1], 'k--', lw=2)
|
760 |
+
plt.xlim([0.0, 1.0])
|
761 |
+
plt.ylim([0.0, 1.05])
|
762 |
+
plt.xlabel('False Positive Rate')
|
763 |
+
plt.ylabel('True Positive Rate')
|
764 |
+
plt.title('Receiver Operating Characteristic (ROC)')
|
765 |
+
plt.legend(loc="lower right")
|
766 |
+
plt.savefig('plots/binary/roc_curve.png')
|
767 |
+
plt.close()
|
768 |
+
|
769 |
+
results = {
|
770 |
+
'fold_metrics': fold_metrics,
|
771 |
+
'overall': {
|
772 |
+
'accuracy': float(overall_accuracy),
|
773 |
+
'precision': float(overall_precision),
|
774 |
+
'recall': float(overall_recall),
|
775 |
+
'f1': float(overall_f1),
|
776 |
+
'auc': float(overall_auc) if overall_auc > 0 else None
|
777 |
+
},
|
778 |
+
'cross_validation': {
|
779 |
+
'mean_accuracy': float(mean_accuracy),
|
780 |
+
'std_accuracy': float(std_accuracy),
|
781 |
+
'confidence_interval_95': [float(ci_lower), float(ci_upper)],
|
782 |
+
'baseline_accuracy': float(baseline_accuracy),
|
783 |
+
'most_frequent_class': str(label_encoder.inverse_transform([most_frequent_class])[0]),
|
784 |
+
't_statistic': float(t_stat),
|
785 |
+
'p_value': float(p_value),
|
786 |
+
'statistically_significant': "yes" if p_value < 0.05 else "no"
|
787 |
+
},
|
788 |
+
'best_fold': {
|
789 |
+
'fold': best_fold_index + 1,
|
790 |
+
'accuracy': float(fold_metrics[best_fold_index]['accuracy'])
|
791 |
+
}
|
792 |
+
}
|
793 |
+
|
794 |
+
print("\n" + "="*50)
|
795 |
+
print("CROSS-VALIDATION SUMMARY")
|
796 |
+
print("="*50)
|
797 |
+
print(f"Mean Accuracy: {mean_accuracy:.4f} ± {std_accuracy:.4f}")
|
798 |
+
print(f"95% Confidence Interval: [{ci_lower:.4f}, {ci_upper:.4f}]")
|
799 |
+
print(f"Overall Accuracy: {overall_accuracy:.4f}")
|
800 |
+
print(f"Baseline Accuracy: {baseline_accuracy:.4f} (most frequent class: {label_encoder.inverse_transform([most_frequent_class])[0]})")
|
801 |
+
print(f"T-statistic: {t_stat:.4f}, p-value: {p_value:.6f}")
|
802 |
+
|
803 |
+
if p_value < 0.05:
|
804 |
+
print("The model is significantly better than the baseline (p < 0.05)")
|
805 |
+
else:
|
806 |
+
print("The model is NOT significantly better than the baseline (p >= 0.05)")
|
807 |
+
|
808 |
+
print(f"\nBest Fold: {best_fold_index + 1} (Accuracy: {fold_metrics[best_fold_index]['accuracy']:.4f})")
|
809 |
+
|
810 |
+
return best_model_data, results
|
811 |
+
|
812 |
+
def save_binary_model(model_data, results, output_dir='models/binary_classifier'):
|
813 |
+
if not os.path.exists(output_dir):
|
814 |
+
os.makedirs(output_dir)
|
815 |
+
|
816 |
+
model_path = os.path.join(output_dir, 'nn_model.pt')
|
817 |
+
torch.save(model_data['model'].state_dict(), model_path)
|
818 |
+
|
819 |
+
scaler_path = os.path.join(output_dir, 'scaler.joblib')
|
820 |
+
joblib.dump(model_data['scaler'], scaler_path)
|
821 |
+
|
822 |
+
encoder_path = os.path.join(output_dir, 'label_encoder.joblib')
|
823 |
+
joblib.dump(model_data['label_encoder'], encoder_path)
|
824 |
+
|
825 |
+
imputer_path = os.path.join(output_dir, 'imputer.joblib')
|
826 |
+
joblib.dump(model_data['imputer'], imputer_path)
|
827 |
+
|
828 |
+
results_path = os.path.join(output_dir, 'cv_results.json')
|
829 |
+
with open(results_path, 'w') as f:
|
830 |
+
json.dump(results, f, indent=4)
|
831 |
+
|
832 |
+
print(f"Binary model saved to {model_path}")
|
833 |
+
print(f"CV results saved to {results_path}")
|
834 |
+
|
835 |
+
return {
|
836 |
+
'model_path': model_path,
|
837 |
+
'scaler_path': scaler_path,
|
838 |
+
'encoder_path': encoder_path,
|
839 |
+
'imputer_path': imputer_path,
|
840 |
+
'results_path': results_path
|
841 |
+
}
|
842 |
+
|
843 |
+
def parse_args():
|
844 |
+
parser = argparse.ArgumentParser(description='Binary Neural Network Classifier (Human vs AI) with Cross-Validation')
|
845 |
+
parser.add_argument('--random_seed', type=int, default=42,
|
846 |
+
help='Random seed for reproducibility')
|
847 |
+
parser.add_argument('--folds', type=int, default=5,
|
848 |
+
help='Number of cross-validation folds')
|
849 |
+
parser.add_argument('--epochs', type=int, default=100,
|
850 |
+
help='Maximum number of training epochs per fold')
|
851 |
+
parser.add_argument('--patience', type=int, default=10,
|
852 |
+
help='Early stopping patience (epochs)')
|
853 |
+
return parser.parse_args()
|
854 |
+
|
855 |
+
def main():
|
856 |
+
print("\n" + "="*50)
|
857 |
+
print("MEDIUM BINARY CLASSIFIER")
|
858 |
+
print("="*50 + "\n")
|
859 |
+
|
860 |
+
args = parse_args()
|
861 |
+
|
862 |
+
seed = args.random_seed
|
863 |
+
np.random.seed(seed)
|
864 |
+
torch.manual_seed(seed)
|
865 |
+
if GPU_AVAILABLE:
|
866 |
+
torch.cuda.manual_seed_all(seed)
|
867 |
+
|
868 |
+
plt.switch_backend('agg')
|
869 |
+
|
870 |
+
feature_config = {
|
871 |
+
'basic_scores': True,
|
872 |
+
'basic_text_stats': ['total_tokens', 'total_words', 'unique_words', 'stop_words', 'avg_word_length'],
|
873 |
+
'morphological': ['pos_distribution', 'unique_lemmas', 'lemma_word_ratio'],
|
874 |
+
'syntactic': ['dependencies', 'noun_chunks'],
|
875 |
+
'entities': ['total_entities', 'entity_types'],
|
876 |
+
'diversity': ['ttr', 'mtld'],
|
877 |
+
'structure': ['sentence_count', 'avg_sentence_length', 'question_sentences', 'exclamation_sentences'],
|
878 |
+
'readability': ['words_per_sentence', 'syllables_per_word', 'flesh_kincaid_score', 'long_words_percent'],
|
879 |
+
'semantic': True
|
880 |
+
}
|
881 |
+
|
882 |
+
model_data, results, save_paths = cross_validate_simple_classifier(
|
883 |
+
directory_path="experiments/results/two_scores_with_long_text_analyze_2048T",
|
884 |
+
feature_config=feature_config,
|
885 |
+
n_splits=5,
|
886 |
+
random_state=seed,
|
887 |
+
epochs=150,
|
888 |
+
hidden_sizes=[256, 192, 128, 64],
|
889 |
+
dropout=0.3,
|
890 |
+
early_stopping_patience=15
|
891 |
+
)
|
892 |
+
|
893 |
+
print("\nTraining completed.")
|
894 |
+
print(f"Medium binary classifier saved to {save_paths['model_path']}")
|
895 |
+
|
896 |
+
if __name__ == "__main__":
|
897 |
+
main()
|