Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,335 +1,120 @@
|
|
1 |
-
import
|
2 |
-
import gradio as gr
|
3 |
-
import json
|
4 |
-
import logging
|
5 |
-
import torch
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
|
9 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
10 |
-
from diffusers.utils import load_image
|
11 |
-
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
12 |
-
import copy
|
13 |
-
import random
|
14 |
-
import time
|
15 |
import base64
|
|
|
|
|
16 |
import tempfile
|
17 |
|
18 |
-
# Load LoRAs from JSON file
|
19 |
-
with open('loras.json', 'r') as f:
|
20 |
-
loras = json.load(f)
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
vae=good_vae,
|
32 |
-
transformer=pipe.transformer,
|
33 |
-
text_encoder=pipe.text_encoder,
|
34 |
-
tokenizer=pipe.tokenizer,
|
35 |
-
text_encoder_2=pipe.text_encoder_2,
|
36 |
-
tokenizer_2=pipe.tokenizer_2,
|
37 |
-
torch_dtype=dtype
|
38 |
-
)
|
39 |
|
40 |
-
|
|
|
|
|
|
|
41 |
|
42 |
-
|
43 |
|
44 |
-
class calculateDuration:
|
45 |
-
def __init__(self, activity_name=""):
|
46 |
-
self.activity_name = activity_name
|
47 |
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
51 |
|
52 |
-
|
53 |
-
|
54 |
-
self.elapsed_time = self.end_time - self.start_time
|
55 |
-
if self.activity_name:
|
56 |
-
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
57 |
-
else:
|
58 |
-
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
59 |
-
|
60 |
-
def update_selection(evt: gr.SelectData, width, height):
|
61 |
-
selected_lora = loras[evt.index]
|
62 |
-
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
63 |
-
lora_repo = selected_lora["repo"]
|
64 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
65 |
-
if "aspect" in selected_lora:
|
66 |
-
if selected_lora["aspect"] == "portrait":
|
67 |
-
width = 768
|
68 |
-
height = 1024
|
69 |
-
elif selected_lora["aspect"] == "landscape":
|
70 |
-
width = 1024
|
71 |
-
height = 768
|
72 |
-
else:
|
73 |
-
width = 1024
|
74 |
-
height = 1024
|
75 |
-
return (
|
76 |
-
gr.update(placeholder=new_placeholder),
|
77 |
-
updated_text,
|
78 |
-
evt.index,
|
79 |
-
width,
|
80 |
-
height,
|
81 |
-
)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
generator = torch.Generator(device="cuda").manual_seed(seed)
|
87 |
-
with calculateDuration("Generating image"):
|
88 |
-
# Generate image
|
89 |
-
for img in pipe.flux_pipe_call_that_returns_an_iterable_of_images(
|
90 |
-
prompt=prompt_mash,
|
91 |
-
num_inference_steps=steps,
|
92 |
-
guidance_scale=cfg_scale,
|
93 |
-
width=width,
|
94 |
-
height=height,
|
95 |
-
generator=generator,
|
96 |
-
joint_attention_kwargs={"scale": lora_scale},
|
97 |
-
output_type="pil",
|
98 |
-
good_vae=good_vae,
|
99 |
-
):
|
100 |
-
yield img
|
101 |
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
final_image = pipe_i2i(
|
107 |
-
prompt=prompt_mash,
|
108 |
-
image=image_input,
|
109 |
-
strength=image_strength,
|
110 |
-
num_inference_steps=steps,
|
111 |
-
guidance_scale=cfg_scale,
|
112 |
-
width=width,
|
113 |
-
height=height,
|
114 |
-
generator=generator,
|
115 |
-
joint_attention_kwargs={"scale": lora_scale},
|
116 |
-
output_type="pil",
|
117 |
-
).images[0]
|
118 |
|
119 |
-
# Save the image as a downloadable PNG file
|
120 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
121 |
-
final_image.save(temp_file.name, "PNG")
|
122 |
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
img_base64 = base64.b64encode(f.read()).decode("utf-8")
|
128 |
|
129 |
-
|
|
|
|
|
|
|
|
|
130 |
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
raise gr.Error("You must select a LoRA before proceeding.")
|
135 |
-
selected_lora = loras[selected_index]
|
136 |
-
lora_path = selected_lora["repo"]
|
137 |
-
trigger_word = selected_lora["trigger_word"]
|
138 |
-
if(trigger_word):
|
139 |
-
if "trigger_position" in selected_lora:
|
140 |
-
if selected_lora["trigger_position"] == "prepend":
|
141 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
142 |
-
else:
|
143 |
-
prompt_mash = f"{prompt} {trigger_word}"
|
144 |
-
else:
|
145 |
-
prompt_mash = f"{trigger_word} {prompt}"
|
146 |
-
else:
|
147 |
-
prompt_mash = prompt
|
148 |
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
# Load LoRA weights
|
154 |
-
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
|
155 |
-
pipe_to_use = pipe_i2i if image_input is not None else pipe
|
156 |
-
weight_name = selected_lora.get("weights", None)
|
157 |
-
|
158 |
-
pipe_to_use.load_lora_weights(
|
159 |
-
lora_path,
|
160 |
-
weight_name=weight_name,
|
161 |
-
low_cpu_mem_usage=True
|
162 |
-
)
|
163 |
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
for image in image_generator:
|
179 |
-
step_counter+=1
|
180 |
-
final_image = image
|
181 |
-
progress_bar = f'<div class="progress-container"><div class="progress-bar" style="--current: {step_counter}; --total: {steps};"></div></div>'
|
182 |
-
yield image, seed, None, None, gr.update(value=progress_bar, visible=True)
|
183 |
-
|
184 |
-
# Save the final image and encode to Base64
|
185 |
-
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
186 |
-
final_image.save(temp_file.name, "PNG")
|
187 |
-
with open(temp_file.name, "rb") as f:
|
188 |
-
img_base64 = base64.b64encode(f.read()).decode("utf-8")
|
189 |
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
print(base_model)
|
198 |
-
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
|
199 |
-
raise Exception("Not a FLUX LoRA!")
|
200 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
201 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
202 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
203 |
-
fs = HfFileSystem()
|
204 |
-
try:
|
205 |
-
list_of_files = fs.ls(link, detail=False)
|
206 |
-
for file in list_of_files:
|
207 |
-
if(file.endswith(".safetensors")):
|
208 |
-
safetensors_name = file.split("/")[-1]
|
209 |
-
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
|
210 |
-
image_elements = file.split("/")
|
211 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
|
212 |
-
except Exception as e:
|
213 |
-
print(e)
|
214 |
-
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
215 |
-
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
|
216 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
217 |
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
else:
|
224 |
-
return get_huggingface_safetensors(link)
|
225 |
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
<img src="{image}" />
|
237 |
-
<div>
|
238 |
-
<h3>{title}</h3>
|
239 |
-
<small>{"Using: <code><b"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
|
240 |
-
</div>
|
241 |
-
</div>
|
242 |
</div>
|
243 |
-
|
244 |
-
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
245 |
-
if(not existing_item_index):
|
246 |
-
new_item = {
|
247 |
-
"image": image,
|
248 |
-
"title": title,
|
249 |
-
"repo": repo,
|
250 |
-
"weights": path,
|
251 |
-
"trigger_word": trigger_word
|
252 |
-
}
|
253 |
-
print(new_item)
|
254 |
-
existing_item_index = len(loras)
|
255 |
-
loras.append(new_item)
|
256 |
-
|
257 |
-
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
258 |
-
except Exception as e:
|
259 |
-
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
|
260 |
-
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
|
261 |
-
else:
|
262 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
263 |
|
264 |
-
|
265 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
266 |
|
267 |
-
run_lora.zerogpu = True
|
268 |
|
269 |
-
|
270 |
-
|
271 |
-
#gen_column{align-self: stretch}
|
272 |
-
#title{text-align: center}
|
273 |
-
#title h1{font-size: 3em; display:inline-flex; align-items:center}
|
274 |
-
#title img{width: 100px; margin-right: 0.5em}
|
275 |
-
#gallery .grid-wrap{height: 10vh}
|
276 |
-
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
|
277 |
-
.card_internal{display: flex;height: 100px;margin-top: .5em}
|
278 |
-
.card_internal img{margin-right: 1em}
|
279 |
-
.styler{--form-gap-width: 0px !important}
|
280 |
-
#progress{height:30px}
|
281 |
-
#progress .generating{display:none}
|
282 |
-
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
|
283 |
-
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
|
284 |
-
'''
|
285 |
-
font=[gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
|
286 |
-
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
|
287 |
-
title = gr.HTML(
|
288 |
-
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA"> FLUX LoRA the Explorer</h1>""",
|
289 |
-
elem_id="title",
|
290 |
-
)
|
291 |
-
selected_index = gr.State(None)
|
292 |
-
with gr.Row():
|
293 |
-
with gr.Column(scale=3):
|
294 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
295 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
296 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
297 |
-
with gr.Row():
|
298 |
-
with gr.Column():
|
299 |
-
selected_info = gr.Markdown("")
|
300 |
-
gallery = gr.Gallery(
|
301 |
-
[(item["image"], item["title"]) for item in loras],
|
302 |
-
label="LoRA Gallery",
|
303 |
-
allow_preview=False,
|
304 |
-
columns=3,
|
305 |
-
elem_id="gallery",
|
306 |
-
show_share_button=False
|
307 |
-
)
|
308 |
-
with gr.Group():
|
309 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
|
310 |
-
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
|
311 |
-
custom_lora_info = gr.HTML(visible=False)
|
312 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
313 |
-
with gr.Column():
|
314 |
-
progress_bar = gr.Markdown(elem_id="progress",visible=False)
|
315 |
-
result = gr.Image(label="Generated Image")
|
316 |
-
download_link = gr.File(label="Download Image")
|
317 |
-
base64_output = gr.Textbox(label="Base64 Encoded Image")
|
318 |
-
|
319 |
-
with gr.Row():
|
320 |
-
with gr.Accordion("Advanced Settings", open=False):
|
321 |
-
with gr.Row():
|
322 |
-
input_image = gr.Image(label="Input image", type="filepath")
|
323 |
-
image_strength = gr.Slider(label="Denoise Strength", info="Lower means more image influence", minimum=0.1, maximum=1.0, step=0.01, value=0.75)
|
324 |
-
with gr.Column():
|
325 |
-
with gr.Row():
|
326 |
-
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
|
327 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
|
328 |
-
|
329 |
-
with gr.Row():
|
330 |
-
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
|
331 |
-
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
|
332 |
-
|
333 |
-
with gr.Row():
|
334 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
335 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum
|
|
|
1 |
+
import qrcode
|
|
|
|
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
import io
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
import base64
|
6 |
+
import numpy as np
|
7 |
+
import cv2
|
8 |
import tempfile
|
9 |
|
|
|
|
|
|
|
10 |
|
11 |
+
# Function to generate a QR code and return Base64 and PNG file
|
12 |
+
def generate_qr(data):
|
13 |
+
qr = qrcode.QRCode(
|
14 |
+
version=1,
|
15 |
+
error_correction=qrcode.constants.ERROR_CORRECT_L,
|
16 |
+
box_size=10,
|
17 |
+
border=4,
|
18 |
+
)
|
19 |
+
qr.add_data(data)
|
20 |
+
qr.make(fit=True)
|
21 |
+
img = qr.make_image(fill="black", back_color="white")
|
22 |
|
23 |
+
# Encode the image as a base64 string
|
24 |
+
buffered = io.BytesIO()
|
25 |
+
img.save(buffered, format="PNG")
|
26 |
+
img_base64 = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
+
# Save the image temporarily as a PNG file
|
29 |
+
temp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
|
30 |
+
img.save(temp_file.name, format="PNG")
|
31 |
+
temp_file.close()
|
32 |
|
33 |
+
return f"data:image/png;base64,{img_base64}", temp_file.name, img_base64
|
34 |
|
|
|
|
|
|
|
35 |
|
36 |
+
# Function to decode a QR code from an uploaded image
|
37 |
+
def decode_qr(img):
|
38 |
+
if img is None:
|
39 |
+
return "No image uploaded."
|
40 |
|
41 |
+
# Convert PIL image to a NumPy array
|
42 |
+
img_array = np.array(img)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
43 |
|
44 |
+
# Convert RGB to BGR as OpenCV expects
|
45 |
+
if img_array.ndim == 3:
|
46 |
+
img_array = cv2.cvtColor(img_array, cv2.COLOR_RGB2BGR)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
48 |
+
# Initialize OpenCV QR code detector
|
49 |
+
detector = cv2.QRCodeDetector()
|
50 |
+
data, _, _ = detector.detectAndDecode(img_array)
|
51 |
+
return data if data else "No QR code found."
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
53 |
|
54 |
+
# Gradio Interface
|
55 |
+
def create_gradio_interface():
|
56 |
+
with gr.Blocks() as demo:
|
57 |
+
gr.Markdown("## QR Code Generator and Decoder")
|
|
|
58 |
|
59 |
+
# Tab for generating QR codes
|
60 |
+
with gr.Tab("Generate QR Code"):
|
61 |
+
with gr.Row():
|
62 |
+
data_input = gr.Textbox(placeholder="Enter text or URL to encode", label="Input Data")
|
63 |
+
generate_button = gr.Button("Generate QR Code")
|
64 |
|
65 |
+
qr_code_html = gr.HTML(label="Generated QR Code (Base64 Embedded)")
|
66 |
+
qr_png_file = gr.File(label="Download QR Code (PNG)")
|
67 |
+
qr_base64_file = gr.File(label="Download Base64 (TXT)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
|
69 |
+
def generate_qr_interface(data):
|
70 |
+
if not data.strip():
|
71 |
+
raise ValueError("Input text cannot be empty!")
|
72 |
+
img_base64, png_path, base64_str = generate_qr(data)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
+
# Save Base64 string as a .txt file
|
75 |
+
base64_txt_path = tempfile.NamedTemporaryFile(delete=False, suffix=".txt")
|
76 |
+
with open(base64_txt_path.name, "w") as f:
|
77 |
+
f.write(base64_str)
|
78 |
+
|
79 |
+
# Wrap the base64 string in an <img> tag for display
|
80 |
+
html_content = f'<img src="{img_base64}" alt="QR Code" style="max-width:300px;">'
|
81 |
+
return html_content, png_path, base64_txt_path.name
|
82 |
+
|
83 |
+
generate_button.click(
|
84 |
+
generate_qr_interface,
|
85 |
+
inputs=data_input,
|
86 |
+
outputs=[qr_code_html, qr_png_file, qr_base64_file],
|
87 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
88 |
|
89 |
+
# Tab for decoding QR codes
|
90 |
+
with gr.Tab("Decode QR Code"):
|
91 |
+
with gr.Row():
|
92 |
+
image_input = gr.Image(type="pil", label="Upload QR Code Image")
|
93 |
+
decode_button = gr.Button("Decode QR Code")
|
94 |
+
|
95 |
+
decoded_text = gr.Textbox(label="Decoded Text", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
|
97 |
+
decode_button.click(
|
98 |
+
decode_qr,
|
99 |
+
inputs=image_input,
|
100 |
+
outputs=decoded_text,
|
101 |
+
)
|
|
|
|
|
102 |
|
103 |
+
# Add the logo at the bottom center using gr.HTML
|
104 |
+
gr.HTML("""
|
105 |
+
<div style="
|
106 |
+
position: fixed;
|
107 |
+
bottom: 20px;
|
108 |
+
left: 50%;
|
109 |
+
transform: translateX(-50%);
|
110 |
+
z-index: 1000;
|
111 |
+
">
|
112 |
+
<img src="file=space-logo.png" alt="Space Logo" style="width: 150px; height: auto;">
|
|
|
|
|
|
|
|
|
|
|
|
|
113 |
</div>
|
114 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
115 |
|
116 |
+
demo.launch(share=True)
|
|
|
117 |
|
|
|
118 |
|
119 |
+
# Run the Gradio interface
|
120 |
+
create_gradio_interface()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|