DDCM-Compressed-Image-Generation / latent_DDCM_CCFG.py
DDCM's picture
initial commit
b273838
import spaces
import torch
import numpy as np
import gradio as gr
from util.file import generate_binary_file, load_numpy_from_binary_bitwise
from latent_utils import generate_ours
@torch.no_grad()
@spaces.GPU(duration=80)
def main(prompt, T, K, K_tilde, model_type='512x512', bitstream=None, avail_models=None,
progress=gr.Progress(track_tqdm=True)):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
indices = load_numpy_from_binary_bitwise(bitstream, K, T, model_type, T - 1)
if indices is not None:
indices = indices.to(device)
# model, _ = load_model(img_size_to_id[img_size], T, device, float16=True, compile=False)
model = avail_models[model_type].to(device)
model.device = device
model.model.to(device=device)
model.model.scheduler.device = device
model.set_timesteps(T, device=device)
with torch.no_grad():
x, indices = generate_ours(model,
num_noises=K,
num_noises_to_optimize=K_tilde,
prompt=prompt,
negative_prompt=None,
indices=indices)
x = (x / 2 + 0.5).clamp(0, 1)
x = x.detach().cpu().squeeze().numpy()
x = np.transpose(x, (1, 2, 0))
torch.cuda.empty_cache()
if bitstream is None:
indices = generate_binary_file(indices.numpy(), K, T, model_type)
return x, indices
return x