import gradio as gr import numpy as np import spaces import torch import torchvision from latent_utils import compress from util.file import generate_binary_file, load_numpy_from_binary_bitwise from util.img_utils import resize_and_crop @torch.no_grad() @spaces.GPU(duration=80) def main(img_to_compress, T, K, model_type='512x512', bitstream=None, avail_models=None, progress=gr.Progress(track_tqdm=True)): device = torch.device("cuda" if torch.cuda.is_available() else "cpu") indices = load_numpy_from_binary_bitwise(bitstream, K, T, model_type, T - 1) if indices is not None: indices = indices.to(device) if indices is None: img_to_compress = resize_and_crop(img_to_compress, int(model_type.split('x')[0])) img_to_compress = (torchvision.transforms.ToTensor()(img_to_compress) * 2) - 1 img_to_compress = img_to_compress.unsqueeze(0).to(device) else: img_to_compress = None print(T, K, model_type) # model, _ = load_model(img_size_to_id[img_size], T, device, float16=True, compile=False) model = avail_models[model_type].to(device) model.device = device model.model.to(device=device) model.model.scheduler.device = device # model.model.scheduler.scheduler = model.model.scheduler.scheduler.to(device) model.set_timesteps(T, device=device) model.num_timesteps = T with torch.no_grad(): x, indices = compress(model, img_to_compress, K, indices, device=device) x = (x / 2 + 0.5).clamp(0, 1) x = x.detach().cpu().squeeze().numpy() x = np.transpose(x, (1, 2, 0)) torch.cuda.empty_cache() indices = generate_binary_file(indices.numpy(), K, T, model_type) if bitstream is None: return x, indices return x