Firebox / app.py
DSDUDEd's picture
Update app.py
ac2910f verified
raw
history blame
1.65 kB
import asyncio
from transformers import AutoTokenizer, AutoModelForCausalLM
from datasets import load_dataset
# -------------------------------
# Model loading
# -------------------------------
MODEL_NAME = "LiquidAI/LFM2-2.6B"
print("Loading model...")
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
print("Model loaded.")
# -------------------------------
# Fetch prompts from Hugging Face
# -------------------------------
async def fetch_prompts():
print("Fetching prompts from Hugging Face dataset...")
dataset = load_dataset("fka/awesome-chatgpt-prompts", split="train")
all_prompts = dataset['prompt'] # List of 200+ prompts
print(f"Total prompts available: {len(all_prompts)}")
return all_prompts
# -------------------------------
# Main async function
# -------------------------------
async def main():
all_prompts = await fetch_prompts()
# Use first 20 for fast startup
fast_prompts = all_prompts[:20]
print("Using first 20 prompts for fast startup...")
for i, p in enumerate(fast_prompts, 1):
print(f"[Prompt {i}] {p}")
# Load remaining prompts asynchronously
remaining_prompts = all_prompts[20:]
print(f"Loading remaining {len(remaining_prompts)} prompts asynchronously...")
# Example: You could process remaining prompts in background
# For demonstration, just print count after "async load"
await asyncio.sleep(1)
print("Remaining prompts loaded.")
# -------------------------------
# Entry point
# -------------------------------
if __name__ == "__main__":
asyncio.run(main())