|
|
import asyncio |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
from datasets import load_dataset |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_NAME = "LiquidAI/LFM2-2.6B" |
|
|
|
|
|
print("Loading model...") |
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) |
|
|
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME) |
|
|
print("Model loaded.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def fetch_prompts(): |
|
|
print("Fetching prompts from Hugging Face dataset...") |
|
|
dataset = load_dataset("fka/awesome-chatgpt-prompts", split="train") |
|
|
all_prompts = dataset['prompt'] |
|
|
print(f"Total prompts available: {len(all_prompts)}") |
|
|
return all_prompts |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
async def main(): |
|
|
all_prompts = await fetch_prompts() |
|
|
|
|
|
|
|
|
fast_prompts = all_prompts[:20] |
|
|
print("Using first 20 prompts for fast startup...") |
|
|
for i, p in enumerate(fast_prompts, 1): |
|
|
print(f"[Prompt {i}] {p}") |
|
|
|
|
|
|
|
|
remaining_prompts = all_prompts[20:] |
|
|
print(f"Loading remaining {len(remaining_prompts)} prompts asynchronously...") |
|
|
|
|
|
|
|
|
|
|
|
await asyncio.sleep(1) |
|
|
print("Remaining prompts loaded.") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
asyncio.run(main()) |
|
|
|