Daemontatox commited on
Commit
237811d
·
verified ·
1 Parent(s): 2b48bd5

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +73 -43
app.py CHANGED
@@ -12,16 +12,6 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
13
  phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
14
 
15
- # Function to process LaTeX in the output
16
- def process_latex(text):
17
- """
18
- Process LaTeX equations in text:
19
- - Inline equations: $...$
20
- - Block equations: $$...$$
21
- """
22
- # No special processing needed as Gradio's markdown component supports LaTeX
23
- return text
24
-
25
  @spaces.GPU(duration=120)
26
  def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
27
  if not user_message.strip():
@@ -34,8 +24,19 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
34
  sep_tag = "<|im_sep|>"
35
  end_tag = "<|im_end|>"
36
 
37
- # Recommended prompt settings by Microsoft
38
- system_message = "Your role as an assistant involves thoroughly exploring questions through a systematic thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process. Please structure your response into two main sections: Thought and Solution using the specified format: <think> {Thought section} </think> {Solution section}. In the Thought section, detail your reasoning process in steps. Each step should include detailed considerations such as analysing questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps. In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The Solution section should be logical, accurate, and concise and detail necessary steps needed to reach the conclusion. You can use LaTeX for mathematical expressions, enclosed in $ for inline equations and $$ for block equations. Now, try to solve the following question through the above guidelines:"
 
 
 
 
 
 
 
 
 
 
 
39
  prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
40
  for message in history_state:
41
  if message["role"] == "user":
@@ -46,8 +47,6 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
46
 
47
  inputs = tokenizer(prompt, return_tensors="pt").to(device)
48
 
49
- do_sample = not (temperature == 1.0 and top_k >= 100 and top_p == 1.0)
50
-
51
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
52
 
53
  # sampling techniques
@@ -56,10 +55,10 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
56
  "attention_mask": inputs["attention_mask"],
57
  "max_new_tokens": int(max_tokens),
58
  "do_sample": True,
59
- "temperature": 0.8,
60
  "top_k": int(top_k),
61
- "top_p": 0.95,
62
- "repetition_penalty": repetition_penalty,
63
  "streamer": streamer,
64
  }
65
 
@@ -72,39 +71,28 @@ def generate_response(user_message, max_tokens, temperature, top_k, top_p, repet
72
  {"role": "user", "content": user_message},
73
  {"role": "assistant", "content": ""}
74
  ]
 
75
  for new_token in streamer:
76
  cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
77
  assistant_response += cleaned_token
78
- # Process the response to handle LaTeX content
79
- processed_response = process_latex(assistant_response.strip())
80
- new_history[-1]["content"] = processed_response
81
  yield new_history, new_history
82
 
83
  yield new_history, new_history
84
 
 
85
  example_messages = {
86
  "Math reasoning": "If a rectangular prism has a length of 6 cm, a width of 4 cm, and a height of 5 cm, what is the length of the longest line segment that can be drawn from one vertex to another?",
87
  "Logic puzzle": "Four people (Alex, Blake, Casey, and Dana) each have a different favorite color (red, blue, green, yellow) and a different favorite fruit (apple, banana, cherry, date). Given the following clues: 1) The person who likes red doesn't like dates. 2) Alex likes yellow. 3) The person who likes blue likes cherries. 4) Blake doesn't like apples or bananas. 5) Casey doesn't like yellow or green. Who likes what color and what fruit?",
88
  "Physics problem": "A ball is thrown upward with an initial velocity of 15 m/s from a height of 2 meters above the ground. Assuming the acceleration due to gravity is 9.8 m/s², determine: 1) The maximum height the ball reaches. 2) The total time the ball is in the air before hitting the ground. 3) The velocity with which the ball hits the ground.",
89
- "Math with LaTeX": "Solve the quadratic equation $ax^2 + bx + c = 0$ for $x$ using the quadratic formula. Then, solve the specific equation $3x^2 - 6x + 2 = 0$."
90
- }
91
-
92
- # Customize the Gradio CSS to enhance the LaTeX rendering
93
- css = """
94
- .math-container .katex {
95
- font-size: 1.2em;
96
- }
97
- .math-block .katex {
98
- font-size: 1.5em;
99
- display: block;
100
- margin: 1em 0;
101
  }
102
- """
103
 
104
- with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
105
  gr.Markdown(
106
  """
107
- # Try the example problems below to see how the model breaks down complex reasoning problems with LaTeX support.
 
108
  """
109
  )
110
 
@@ -148,14 +136,14 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
148
  )
149
 
150
  with gr.Column(scale=4):
151
- # Use Chatbot with latex_delimiters to enable LaTeX rendering
152
  chatbot = gr.Chatbot(
153
  label="Chat",
154
- type="messages",
155
- latex_delimiters=[
156
- {"left": "$$", "right": "$$", "display": True},
157
- {"left": "$", "right": "$", "display": False}
158
- ]
159
  )
160
  with gr.Row():
161
  user_input = gr.Textbox(
@@ -170,7 +158,49 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
170
  example1_button = gr.Button("Math reasoning")
171
  example2_button = gr.Button("Logic puzzle")
172
  example3_button = gr.Button("Physics problem")
173
- example4_button = gr.Button("Math with LaTeX")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
174
 
175
  submit_button.click(
176
  fn=generate_response,
@@ -204,7 +234,7 @@ with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
204
  outputs=user_input
205
  )
206
  example4_button.click(
207
- fn=lambda: gr.update(value=example_messages["Math with LaTeX"]),
208
  inputs=None,
209
  outputs=user_input
210
  )
 
12
  phi4_model = AutoModelForCausalLM.from_pretrained(phi4_model_path, device_map="auto", torch_dtype="auto")
13
  phi4_tokenizer = AutoTokenizer.from_pretrained(phi4_model_path)
14
 
 
 
 
 
 
 
 
 
 
 
15
  @spaces.GPU(duration=120)
16
  def generate_response(user_message, max_tokens, temperature, top_k, top_p, repetition_penalty, history_state):
17
  if not user_message.strip():
 
24
  sep_tag = "<|im_sep|>"
25
  end_tag = "<|im_end|>"
26
 
27
+ # Add a prompt to encourage LaTeX usage for mathematical expressions
28
+ system_message = """Your role as an assistant involves thoroughly exploring questions through a systematic thinking process before providing the final precise and accurate solutions. This requires engaging in a comprehensive cycle of analysis, summarizing, exploration, reassessment, reflection, backtracing, and iteration to develop well-considered thinking process.
29
+
30
+ Please structure your response into two main sections: Thought and Solution using the specified format: <think> {Thought section} </think> {Solution section}.
31
+
32
+ In the Thought section, detail your reasoning process in steps. Each step should include detailed considerations such as analysing questions, summarizing relevant findings, brainstorming new ideas, verifying the accuracy of the current steps, refining any errors, and revisiting previous steps.
33
+
34
+ In the Solution section, based on various attempts, explorations, and reflections from the Thought section, systematically present the final solution that you deem correct. The Solution section should be logical, accurate, and concise and detail necessary steps needed to reach the conclusion.
35
+
36
+ IMPORTANT: When expressing mathematical formulas or equations, always use LaTeX format. Use single dollar signs for inline equations (e.g., $x^2$) and double dollar signs for block equations (e.g., $$\\frac{a}{b}$$). Ensure all mathematical symbols, fractions, square roots, and complex expressions are properly formatted in LaTeX.
37
+
38
+ Now, try to solve the following question through the above guidelines:"""
39
+
40
  prompt = f"{start_tag}system{sep_tag}{system_message}{end_tag}"
41
  for message in history_state:
42
  if message["role"] == "user":
 
47
 
48
  inputs = tokenizer(prompt, return_tensors="pt").to(device)
49
 
 
 
50
  streamer = TextIteratorStreamer(tokenizer, skip_prompt=True)
51
 
52
  # sampling techniques
 
55
  "attention_mask": inputs["attention_mask"],
56
  "max_new_tokens": int(max_tokens),
57
  "do_sample": True,
58
+ "temperature": float(temperature),
59
  "top_k": int(top_k),
60
+ "top_p": float(top_p),
61
+ "repetition_penalty": float(repetition_penalty),
62
  "streamer": streamer,
63
  }
64
 
 
71
  {"role": "user", "content": user_message},
72
  {"role": "assistant", "content": ""}
73
  ]
74
+
75
  for new_token in streamer:
76
  cleaned_token = new_token.replace("<|im_start|>", "").replace("<|im_sep|>", "").replace("<|im_end|>", "")
77
  assistant_response += cleaned_token
78
+ new_history[-1]["content"] = assistant_response.strip()
 
 
79
  yield new_history, new_history
80
 
81
  yield new_history, new_history
82
 
83
+ # Add an example that explicitly shows LaTeX formatting
84
  example_messages = {
85
  "Math reasoning": "If a rectangular prism has a length of 6 cm, a width of 4 cm, and a height of 5 cm, what is the length of the longest line segment that can be drawn from one vertex to another?",
86
  "Logic puzzle": "Four people (Alex, Blake, Casey, and Dana) each have a different favorite color (red, blue, green, yellow) and a different favorite fruit (apple, banana, cherry, date). Given the following clues: 1) The person who likes red doesn't like dates. 2) Alex likes yellow. 3) The person who likes blue likes cherries. 4) Blake doesn't like apples or bananas. 5) Casey doesn't like yellow or green. Who likes what color and what fruit?",
87
  "Physics problem": "A ball is thrown upward with an initial velocity of 15 m/s from a height of 2 meters above the ground. Assuming the acceleration due to gravity is 9.8 m/s², determine: 1) The maximum height the ball reaches. 2) The total time the ball is in the air before hitting the ground. 3) The velocity with which the ball hits the ground.",
88
+ "LaTeX example": "Solve the quadratic equation ax^2 + bx + c = 0 and explain the solution. Then calculate the roots of 2x^2 - 5x + 3 = 0."
 
 
 
 
 
 
 
 
 
 
 
89
  }
 
90
 
91
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
92
  gr.Markdown(
93
  """
94
+ # Problem Solving with LaTeX Math Support
95
+ This application uses advanced reasoning to solve complex problems with LaTeX formatting for mathematical expressions.
96
  """
97
  )
98
 
 
136
  )
137
 
138
  with gr.Column(scale=4):
139
+ # Use the markdown flag to ensure proper rendering of LaTeX
140
  chatbot = gr.Chatbot(
141
  label="Chat",
142
+ render_markdown=True,
143
+ elem_id="chatbot",
144
+ show_copy_button=True,
145
+ bubble_full_width=False,
146
+ avatar_images=(None, None)
147
  )
148
  with gr.Row():
149
  user_input = gr.Textbox(
 
158
  example1_button = gr.Button("Math reasoning")
159
  example2_button = gr.Button("Logic puzzle")
160
  example3_button = gr.Button("Physics problem")
161
+ example4_button = gr.Button("LaTeX example")
162
+
163
+ # Add custom JavaScript to ensure LaTeX rendering
164
+ demo.load(None, None, None, _js="""
165
+ function() {
166
+ // Check if MathJax is available
167
+ if (typeof window.MathJax === 'undefined') {
168
+ // Load MathJax if not available
169
+ const script = document.createElement('script');
170
+ script.src = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.7/MathJax.js?config=TeX-MML-AM_CHTML';
171
+ script.async = true;
172
+ document.head.appendChild(script);
173
+
174
+ // Configure MathJax
175
+ window.MathJax = {
176
+ tex2jax: {
177
+ inlineMath: [['$', '$']],
178
+ displayMath: [['$$', '$$']],
179
+ processEscapes: true
180
+ },
181
+ showProcessingMessages: false,
182
+ messageStyle: 'none'
183
+ };
184
+ }
185
+
186
+ // Function to render LaTeX in the chatbot
187
+ function renderMathInChatbot() {
188
+ if (window.MathJax && window.MathJax.Hub) {
189
+ window.MathJax.Hub.Queue(['Typeset', window.MathJax.Hub, document.getElementById('chatbot')]);
190
+ }
191
+ }
192
+
193
+ // Set up a mutation observer to detect changes in the chatbot
194
+ const observer = new MutationObserver(renderMathInChatbot);
195
+ const chatbot = document.getElementById('chatbot');
196
+ if (chatbot) {
197
+ observer.observe(chatbot, { childList: true, subtree: true });
198
+ }
199
+
200
+ // Initial render
201
+ renderMathInChatbot();
202
+ }
203
+ """)
204
 
205
  submit_button.click(
206
  fn=generate_response,
 
234
  outputs=user_input
235
  )
236
  example4_button.click(
237
+ fn=lambda: gr.update(value=example_messages["LaTeX example"]),
238
  inputs=None,
239
  outputs=user_input
240
  )