DanFed commited on
Commit
dc084a6
·
verified ·
1 Parent(s): 74d3798

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +274 -0
app.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # ======================================================================================
2
+ # 1. SETUP: Patch SQLite and Import Libraries
3
+ # ======================================================================================
4
+ # This MUST be the first import to ensure ChromaDB uses the correct SQLite version
5
+ import sys
6
+ import os
7
+ os.environ['PYSQLITE3_BUNDLED'] = '1'
8
+ __import__('pysqlite3')
9
+ sys.modules['sqlite3'] = sys.modules.pop('pysqlite3')
10
+
11
+ # Standard and third-party libraries
12
+ import json
13
+ import pandas as pd
14
+ from typing import List, Union
15
+
16
+ import chromadb
17
+
18
+ import gradio as gr
19
+ from pydantic import BaseModel, ValidationError
20
+ from sentence_transformers import SentenceTransformer, CrossEncoder
21
+
22
+ # LangChain imports
23
+ from langchain_openai.chat_models import ChatOpenAI
24
+ from langchain_community.vectorstores import Chroma
25
+ from langchain.prompts import ChatPromptTemplate
26
+ from langchain.schema.runnable import RunnablePassthrough
27
+ from langchain.schema.output_parser import StrOutputParser
28
+ from langchain.output_parsers import PydanticOutputParser
29
+ from langchain_community.embeddings import SentenceTransformerEmbeddings
30
+
31
+ # ======================================================================================
32
+ # 2. CONSTANTS AND CONFIGURATION
33
+ # ======================================================================================
34
+ DB_DIR = "./chroma_db"
35
+ COLLECTION_NAME = "clinical_examples"
36
+ EMBEDDING_MODEL_NAME = "pritamdeka/S-Biomed-Roberta-snli-multinli-stsb"
37
+ RERANKER_MODEL_NAME = 'cross-encoder/ms-marco-MiniLM-L-6-v2'
38
+ DATASET_URL = "https://huggingface.co/datasets/DanFed/patient_encounters1_notes_preprocessed/raw/main/patient_encounters1_notes_preprocessed.csv"
39
+
40
+
41
+ # ======================================================================================
42
+ # 3. DATABASE SETUP: One-time data loading and embedding
43
+ # ======================================================================================
44
+ def setup_database(client: chromadb.Client):
45
+ """
46
+ Loads data, generates embeddings, and populates the ChromaDB collection
47
+ only if it's empty.
48
+ """
49
+ collection = client.get_or_create_collection(name=COLLECTION_NAME)
50
+
51
+ if collection.count() > 0:
52
+ print(f"Collection '{COLLECTION_NAME}' already exists with {collection.count()} documents. Skipping setup.")
53
+ return
54
+
55
+ print(f"Collection '{COLLECTION_NAME}' is empty. Starting data population...")
56
+
57
+ # Load dataset
58
+ df = pd.read_csv(DATASET_URL)
59
+ df.drop(['index', 'ENCOUNTER_ID', 'CLINICAL_NOTES', 'BIRTHDATE', 'FIRST',
60
+ 'START', 'STOP', 'PATIENT_ID', 'ENCOUNTERCLASS', 'CODE', 'DESCRIPTION',
61
+ 'BASE_ENCOUNTER_COST', 'TOTAL_CLAIM_COST', 'PAYER_COVERAGE',
62
+ 'REASONCODE', 'REASONDESCRIPTION', 'PATIENT_AGE',
63
+ 'DESCRIPTION_OBSERVATIONS', 'DESCRIPTION_CONDITIONS',
64
+ 'DESCRIPTION_MEDICATIONS', 'DESCRIPTION_PROCEDURES', 'AGE_GROUP'], axis=1, inplace=True)
65
+
66
+ # Create example strings
67
+ def create_examples(row):
68
+ return f"Message: \n\n{row['ENCOUNTER_PROMPT'].strip()}\n\nResult: \n\n{row['COND_MED_PRO_STRUCTURED'].strip()}"
69
+ df['EXAMPLES'] = df.apply(create_examples, axis=1)
70
+
71
+ # Generate embeddings
72
+ model = SentenceTransformer(EMBEDDING_MODEL_NAME)
73
+ examples = df["EXAMPLES"].tolist()
74
+ embeddings = model.encode(
75
+ examples,
76
+ batch_size=32,
77
+ show_progress_bar=True,
78
+ convert_to_numpy=True
79
+ )
80
+
81
+ # Add to collection
82
+ collection.add(
83
+ documents=df["EXAMPLES"].tolist(),
84
+ embeddings=embeddings.tolist(),
85
+ ids=[str(i) for i in range(len(df["EXAMPLES"]))]
86
+ )
87
+ print(f"Successfully added {len(df['EXAMPLES'])} documents to the '{COLLECTION_NAME}' collection.")
88
+
89
+
90
+ # ======================================================================================
91
+ # 4. APPLICATION GLOBALS AND AI COMPONENTS
92
+ # ======================================================================================
93
+ # Pydantic schema for structured output
94
+ class ClinicalExtraction(BaseModel):
95
+ conditions: List[str]
96
+ medications: List[str]
97
+ procedures: List[str]
98
+
99
+ # Parser and format instructions
100
+ parser = PydanticOutputParser(pydantic_object=ClinicalExtraction)
101
+ format_instructions = parser.get_format_instructions().replace("{", "{{").replace("}", "}}")
102
+
103
+ # Global variables for AI components
104
+ LANGCHAIN_LLM = None
105
+ FINAL_PROMPT = None
106
+ FINAL_CHAIN = None
107
+ VECTOR_STORE = None
108
+ RERANKER = CrossEncoder(RERANKER_MODEL_NAME)
109
+
110
+ def initialize_ai_components(api_key: str):
111
+ """Initializes all AI components needed for the RAG pipeline."""
112
+ global LANGCHAIN_LLM, FINAL_PROMPT, FINAL_CHAIN
113
+ if not api_key:
114
+ raise gr.Error("OpenAI API Key is required!")
115
+
116
+ # LLM
117
+ LANGCHAIN_LLM = ChatOpenAI(openai_api_key=api_key, temperature=0.2)
118
+
119
+ # Prompt Template
120
+ FINAL_PROMPT = ChatPromptTemplate.from_template(
121
+ f"""You are a clinical information extractor.
122
+ Extract EXACTLY this JSON format and nothing else:
123
+
124
+ {format_instructions}
125
+
126
+ CONTEXT (examples):
127
+
128
+ {{context}}
129
+
130
+ INPUT MESSAGE (clinical note + surrounding metadata):
131
+
132
+ {{input}}
133
+
134
+ Result:"""
135
+ )
136
+
137
+ # RAG Chain
138
+ FINAL_CHAIN = (
139
+ {"context": RunnablePassthrough(), "input": RunnablePassthrough()}
140
+ | FINAL_PROMPT
141
+ | LANGCHAIN_LLM
142
+ | StrOutputParser()
143
+ )
144
+ return "<p style='color:green;'>AI components initialized successfully!</p>"
145
+
146
+ # ======================================================================================
147
+ # 5. RAG PIPELINE
148
+ # ======================================================================================
149
+ def format_docs(docs):
150
+ """Join doc.page_content with blank lines."""
151
+ return "\n\n".join(d.page_content for d in docs)
152
+
153
+ def generate_rag_response(input_text: str) -> Union[dict, str]:
154
+ """
155
+ Performs retrieval, reranking, generation, and validation.
156
+ """
157
+ if not FINAL_CHAIN or not VECTOR_STORE:
158
+ return "Error: AI components not initialized. Please set your API key."
159
+
160
+ # Initial embedding retrieval (top 20)
161
+ retriever = VECTOR_STORE.as_retriever(search_kwargs={"k": 20})
162
+ candidates = retriever.get_relevant_documents(input_text)
163
+
164
+ # Cross-encoder rerank -> top 5
165
+ pairs = [(input_text, d.page_content) for d in candidates]
166
+ scores = RERANKER.predict(pairs)
167
+ sorted_docs = [d for _, d in sorted(zip(scores, candidates), reverse=True)]
168
+ top_docs = sorted_docs[:5]
169
+
170
+ # Build context and invoke chain
171
+ context = format_docs(top_docs)
172
+ raw_output = FINAL_CHAIN.invoke({"context": context, "input": input_text})
173
+
174
+ # Parse and validate the output
175
+ try:
176
+ parsed = parser.parse(raw_output)
177
+ return parsed.dict()
178
+ except ValidationError as e:
179
+ return f"Schema validation failed: {e}. Raw output was: {raw_output}"
180
+
181
+ # ======================================================================================
182
+ # 6. GRADIO UI
183
+ # ======================================================================================
184
+ def create_gradio_ui():
185
+ """Defines and returns the Gradio UI blocks."""
186
+ with gr.Blocks(title="Clinical Information Extractor") as demo:
187
+ gr.Markdown("# Clinical Information Extractor with RAG and Reranking")
188
+
189
+ with gr.Accordion("API Key Configuration", open=True):
190
+ key_box = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-...")
191
+ key_btn = gr.Button("Set API Key")
192
+ key_status = gr.Markdown("")
193
+ key_btn.click(initialize_ai_components, inputs=[key_box], outputs=[key_status])
194
+
195
+ gr.Markdown("---")
196
+ gr.Markdown("## Enter Clinical Note and Metadata")
197
+
198
+ with gr.Row():
199
+ age_group_input = gr.Textbox(label="Age Group", placeholder="e.g., middle adulthood")
200
+ visit_type_input = gr.Textbox(label="Visit Type", placeholder="e.g., ambulatory")
201
+ description_input = gr.Textbox(label="Description", placeholder="e.g., encounter for check up (procedure)")
202
+ note_input = gr.Textbox(label="Clinical Note", placeholder="Type the clinical note here...", lines=5)
203
+
204
+ chatbot = gr.Chatbot(label="Extraction History", height=400)
205
+ send_btn = gr.Button("➡️ Extract Information")
206
+
207
+ def chat_interface(age, visit, desc, note, history):
208
+ history = history or []
209
+
210
+ # Build full input with metadata
211
+ metadata_parts = []
212
+ if age: metadata_parts.append(f"Age group: {age}")
213
+ if visit: metadata_parts.append(f"Visit type: {visit}")
214
+ if desc: metadata_parts.append(f"Description: {desc}")
215
+ metadata_str = " | ".join(metadata_parts)
216
+
217
+ full_input = f"{metadata_str}\n\nClinical Note:\n{note}" if metadata_str else note
218
+ user_display = f"**Metadata**: {metadata_str}\n\n**Note**: {note}"
219
+
220
+ # Get response from RAG pipeline
221
+ response = generate_rag_response(full_input)
222
+
223
+ # Format bot response
224
+ if isinstance(response, dict):
225
+ bot_response = f"```json\n{json.dumps(response, indent=2)}\n```"
226
+ else:
227
+ bot_response = str(response)
228
+
229
+ history.append((user_display, bot_response))
230
+ return history, "" # Return updated history and clear the input textbox
231
+
232
+ send_btn.click(
233
+ fn=chat_interface,
234
+ inputs=[age_group_input, visit_type_input, description_input, note_input, chatbot],
235
+ outputs=[chatbot, note_input]
236
+ )
237
+ note_input.submit(
238
+ fn=chat_interface,
239
+ inputs=[age_group_input, visit_type_input, description_input, note_input, chatbot],
240
+ outputs=[chatbot, note_input]
241
+ )
242
+ return demo
243
+
244
+ # ======================================================================================
245
+ # 7. MAIN EXECUTION
246
+ # ======================================================================================
247
+ def main():
248
+ """
249
+ Main function to set up the database, initialize components, and launch the UI.
250
+ """
251
+ global VECTOR_STORE
252
+
253
+ # 1. Setup ChromaDB client
254
+ client = chromadb.PersistentClient(path=DB_DIR)
255
+
256
+ # 2. Populate the database if needed
257
+ setup_database(client)
258
+
259
+ # 3. Initialize the LangChain vector store wrapper
260
+ embeddings = SentenceTransformerEmbeddings(model_name=EMBEDDING_MODEL_NAME)
261
+ VECTOR_STORE = Chroma(
262
+ client=client,
263
+ collection_name=COLLECTION_NAME,
264
+ embedding_function=embeddings,
265
+ )
266
+ print(f"Vector store initialized with {VECTOR_STORE._collection.count()} documents.")
267
+
268
+ # 4. Create and launch the Gradio UI
269
+ demo = create_gradio_ui()
270
+ print("Launching Clinical IE Demo...")
271
+ demo.launch(server_name="0.0.0.0")
272
+
273
+ if __name__ == "__main__":
274
+ main()