import torch from torch import nn class LSTMAttention(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim): super(LSTMAttention, self).__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim) self.lstm = nn.LSTM(embedding_dim, hidden_dim, batch_first=True, bidirectional=True) self.attention = nn.Linear(hidden_dim * 2, 1) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(0.5) def forward(self, input_ids): # Embedding слой embedded = self.embedding(input_ids) # (batch_size, seq_len, embedding_dim) # LSTM слой lstm_out, _ = self.lstm(embedded) # (batch_size, seq_len, hidden_dim*2) # Механизм внимания attn_weights = torch.softmax(self.attention(lstm_out), dim=1) # (batch_size, seq_len, 1) # Вектор контекста context_vector = torch.sum(attn_weights * lstm_out, dim=1) # (batch_size, hidden_dim*2) # Классификатор output = self.fc(self.dropout(context_vector)) # (batch_size, output_dim) return output, attn_weights.squeeze(-1)