Spaces:
Runtime error
Runtime error
static llama_context ** g_ctx; | |
static llama_model ** g_model; | |
static common_sampler ** g_smpl; | |
static common_params * g_params; | |
static std::vector<llama_token> * g_input_tokens; | |
static std::ostringstream * g_output_ss; | |
static std::vector<llama_token> * g_output_tokens; | |
static bool is_interacting = false; | |
static bool need_insert_eot = false; | |
static void print_usage(int argc, char ** argv) { | |
(void) argc; | |
LOG("\nexample usage:\n"); | |
LOG("\n text generation: %s -m your_model.gguf -p \"I believe the meaning of life is\" -n 128\n", argv[0]); | |
LOG("\n chat (conversation): %s -m your_model.gguf -p \"You are a helpful assistant\" -cnv\n", argv[0]); | |
LOG("\n"); | |
} | |
static bool file_exists(const std::string & path) { | |
std::ifstream f(path.c_str()); | |
return f.good(); | |
} | |
static bool file_is_empty(const std::string & path) { | |
std::ifstream f; | |
f.exceptions(std::ifstream::failbit | std::ifstream::badbit); | |
f.open(path.c_str(), std::ios::in | std::ios::binary | std::ios::ate); | |
return f.tellg() == 0; | |
} | |
static void write_logfile( | |
const llama_context * ctx, const common_params & params, const llama_model * model, | |
const std::vector<llama_token> & input_tokens, const std::string & output, | |
const std::vector<llama_token> & output_tokens | |
) { | |
if (params.logdir.empty()) { | |
return; | |
} | |
const std::string timestamp = string_get_sortable_timestamp(); | |
const bool success = fs_create_directory_with_parents(params.logdir); | |
if (!success) { | |
LOG_ERR("%s: failed to create logdir %s, cannot write logfile\n", __func__, params.logdir.c_str()); | |
return; | |
} | |
const std::string logfile_path = params.logdir + timestamp + ".yml"; | |
FILE * logfile = fopen(logfile_path.c_str(), "w"); | |
if (logfile == NULL) { | |
LOG_ERR("%s: failed to open logfile %s\n", __func__, logfile_path.c_str()); | |
return; | |
} | |
fprintf(logfile, "binary: main\n"); | |
char model_desc[128]; | |
llama_model_desc(model, model_desc, sizeof(model_desc)); | |
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc); | |
fprintf(logfile, "\n"); | |
fprintf(logfile, "######################\n"); | |
fprintf(logfile, "# Generation Results #\n"); | |
fprintf(logfile, "######################\n"); | |
fprintf(logfile, "\n"); | |
yaml_dump_string_multiline(logfile, "output", output.c_str()); | |
yaml_dump_vector_int(logfile, "output_tokens", output_tokens); | |
llama_perf_dump_yaml(logfile, ctx); | |
fclose(logfile); | |
} | |
static void sigint_handler(int signo) { | |
if (signo == SIGINT) { | |
if (!is_interacting && g_params->interactive) { | |
is_interacting = true; | |
need_insert_eot = true; | |
} else { | |
console::cleanup(); | |
LOG("\n"); | |
common_perf_print(*g_ctx, *g_smpl); | |
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens); | |
// make sure all logs are flushed | |
LOG("Interrupted by user\n"); | |
common_log_pause(common_log_main()); | |
_exit(130); | |
} | |
} | |
} | |
static std::string chat_add_and_format(struct llama_model * model, std::vector<common_chat_msg> & chat_msgs, const std::string & role, const std::string & content) { | |
common_chat_msg new_msg{role, content}; | |
auto formatted = common_chat_format_single(model, g_params->chat_template, chat_msgs, new_msg, role == "user"); | |
chat_msgs.push_back({role, content}); | |
LOG_DBG("formatted: '%s'\n", formatted.c_str()); | |
return formatted; | |
} | |
int main(int argc, char ** argv) { | |
common_params params; | |
g_params = ¶ms; | |
if (!common_params_parse(argc, argv, params, LLAMA_EXAMPLE_MAIN, print_usage)) { | |
return 1; | |
} | |
common_init(); | |
auto & sparams = params.sparams; | |
// save choice to use color for later | |
// (note for later: this is a slightly awkward choice) | |
console::init(params.simple_io, params.use_color); | |
atexit([]() { console::cleanup(); }); | |
if (params.logits_all) { | |
LOG_ERR("************\n"); | |
LOG_ERR("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__); | |
LOG_ERR("************\n\n"); | |
return 0; | |
} | |
if (params.embedding) { | |
LOG_ERR("************\n"); | |
LOG_ERR("%s: please use the 'embedding' tool for embedding calculations\n", __func__); | |
LOG_ERR("************\n\n"); | |
return 0; | |
} | |
if (params.n_ctx != 0 && params.n_ctx < 8) { | |
LOG_WRN("%s: warning: minimum context size is 8, using minimum size.\n", __func__); | |
params.n_ctx = 8; | |
} | |
if (params.rope_freq_base != 0.0) { | |
LOG_WRN("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base); | |
} | |
if (params.rope_freq_scale != 0.0) { | |
LOG_WRN("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale); | |
} | |
LOG_INF("%s: llama backend init\n", __func__); | |
llama_backend_init(); | |
llama_numa_init(params.numa); | |
llama_model * model = nullptr; | |
llama_context * ctx = nullptr; | |
common_sampler * smpl = nullptr; | |
std::vector<common_chat_msg> chat_msgs; | |
g_model = &model; | |
g_ctx = &ctx; | |
g_smpl = &smpl; | |
// load the model and apply lora adapter, if any | |
LOG_INF("%s: load the model and apply lora adapter, if any\n", __func__); | |
common_init_result llama_init = common_init_from_params(params); | |
model = llama_init.model; | |
ctx = llama_init.context; | |
if (model == NULL) { | |
LOG_ERR("%s: error: unable to load model\n", __func__); | |
return 1; | |
} | |
LOG_INF("%s: llama threadpool init, n_threads = %d\n", __func__, (int) params.cpuparams.n_threads); | |
struct ggml_threadpool_params tpp_batch = | |
ggml_threadpool_params_from_cpu_params(params.cpuparams_batch); | |
struct ggml_threadpool_params tpp = | |
ggml_threadpool_params_from_cpu_params(params.cpuparams); | |
set_process_priority(params.cpuparams.priority); | |
struct ggml_threadpool * threadpool_batch = NULL; | |
if (!ggml_threadpool_params_match(&tpp, &tpp_batch)) { | |
threadpool_batch = ggml_threadpool_new(&tpp_batch); | |
if (!threadpool_batch) { | |
LOG_ERR("%s: batch threadpool create failed : n_threads %d\n", __func__, tpp_batch.n_threads); | |
return 1; | |
} | |
// Start the non-batch threadpool in the paused state | |
tpp.paused = true; | |
} | |
struct ggml_threadpool * threadpool = ggml_threadpool_new(&tpp); | |
if (!threadpool) { | |
LOG_ERR("%s: threadpool create failed : n_threads %d\n", __func__, tpp.n_threads); | |
return 1; | |
} | |
llama_attach_threadpool(ctx, threadpool, threadpool_batch); | |
const int n_ctx_train = llama_n_ctx_train(model); | |
const int n_ctx = llama_n_ctx(ctx); | |
if (n_ctx > n_ctx_train) { | |
LOG_WRN("%s: model was trained on only %d context tokens (%d specified)\n", __func__, n_ctx_train, n_ctx); | |
} | |
// print chat template example in conversation mode | |
if (params.conversation) { | |
if (params.enable_chat_template) { | |
LOG_INF("%s: chat template example:\n%s\n", __func__, common_chat_format_example(model, params.chat_template).c_str()); | |
} else { | |
LOG_INF("%s: in-suffix/prefix is specified, chat template will be disabled\n", __func__); | |
} | |
} | |
// print system information | |
{ | |
LOG_INF("\n"); | |
LOG_INF("%s\n", common_params_get_system_info(params).c_str()); | |
LOG_INF("\n"); | |
} | |
std::string path_session = params.path_prompt_cache; | |
std::vector<llama_token> session_tokens; | |
if (!path_session.empty()) { | |
LOG_INF("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str()); | |
if (!file_exists(path_session)) { | |
LOG_INF("%s: session file does not exist, will create.\n", __func__); | |
} else if (file_is_empty(path_session)) { | |
LOG_INF("%s: The session file is empty. A new session will be initialized.\n", __func__); | |
} else { | |
// The file exists and is not empty | |
session_tokens.resize(n_ctx); | |
size_t n_token_count_out = 0; | |
if (!llama_state_load_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) { | |
LOG_ERR("%s: failed to load session file '%s'\n", __func__, path_session.c_str()); | |
return 1; | |
} | |
session_tokens.resize(n_token_count_out); | |
LOG_INF("%s: loaded a session with prompt size of %d tokens\n", __func__, (int)session_tokens.size()); | |
} | |
} | |
const bool add_bos = llama_add_bos_token(model); | |
if (!llama_model_has_encoder(model)) { | |
GGML_ASSERT(!llama_add_eos_token(model)); | |
} | |
LOG_DBG("n_ctx: %d, add_bos: %d\n", n_ctx, add_bos); | |
std::vector<llama_token> embd_inp; | |
{ | |
auto prompt = (params.conversation && params.enable_chat_template && !params.prompt.empty()) | |
? chat_add_and_format(model, chat_msgs, "system", params.prompt) // format the system prompt in conversation mode | |
: params.prompt; | |
if (params.interactive_first || !params.prompt.empty() || session_tokens.empty()) { | |
LOG_DBG("tokenize the prompt\n"); | |
embd_inp = common_tokenize(ctx, prompt, true, true); | |
} else { | |
LOG_DBG("use session tokens\n"); | |
embd_inp = session_tokens; | |
} | |
LOG_DBG("prompt: \"%s\"\n", prompt.c_str()); | |
LOG_DBG("tokens: %s\n", string_from(ctx, embd_inp).c_str()); | |
} | |
// Should not run without any tokens | |
if (embd_inp.empty()) { | |
if (add_bos) { | |
embd_inp.push_back(llama_token_bos(model)); | |
LOG_WRN("embd_inp was considered empty and bos was added: %s\n", string_from(ctx, embd_inp).c_str()); | |
} else { | |
LOG_ERR("input is empty\n"); | |
return -1; | |
} | |
} | |
// Tokenize negative prompt | |
if ((int) embd_inp.size() > n_ctx - 4) { | |
LOG_ERR("%s: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4); | |
return 1; | |
} | |
// debug message about similarity of saved session, if applicable | |
size_t n_matching_session_tokens = 0; | |
if (!session_tokens.empty()) { | |
for (llama_token id : session_tokens) { | |
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) { | |
break; | |
} | |
n_matching_session_tokens++; | |
} | |
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) { | |
LOG_INF("%s: using full prompt from session file\n", __func__); | |
} else if (n_matching_session_tokens >= embd_inp.size()) { | |
LOG_INF("%s: session file has exact match for prompt!\n", __func__); | |
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) { | |
LOG_WRN("%s: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n", | |
__func__, n_matching_session_tokens, embd_inp.size()); | |
} else { | |
LOG_INF("%s: session file matches %zu / %zu tokens of prompt\n", | |
__func__, n_matching_session_tokens, embd_inp.size()); | |
} | |
// remove any "future" tokens that we might have inherited from the previous session | |
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1); | |
} | |
LOG_DBG("recalculate the cached logits (check): embd_inp.size() %zu, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu\n", | |
embd_inp.size(), n_matching_session_tokens, embd_inp.size(), session_tokens.size()); | |
// if we will use the cache for the full prompt without reaching the end of the cache, force | |
// reevaluation of the last token to recalculate the cached logits | |
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) { | |
LOG_DBG("recalculate the cached logits (do): session_tokens.resize( %zu )\n", embd_inp.size() - 1); | |
session_tokens.resize(embd_inp.size() - 1); | |
} | |
// number of tokens to keep when resetting context | |
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) { | |
params.n_keep = (int)embd_inp.size(); | |
} else { | |
params.n_keep += add_bos; // always keep the BOS token | |
} | |
if (params.conversation) { | |
params.interactive_first = true; | |
} | |
// enable interactive mode if interactive start is specified | |
if (params.interactive_first) { | |
params.interactive = true; | |
} | |
if (params.verbose_prompt) { | |
LOG_INF("%s: prompt: '%s'\n", __func__, params.prompt.c_str()); | |
LOG_INF("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size()); | |
for (int i = 0; i < (int) embd_inp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", embd_inp[i], common_token_to_piece(ctx, embd_inp[i]).c_str()); | |
} | |
if (params.n_keep > add_bos) { | |
LOG_INF("%s: static prompt based on n_keep: '", __func__); | |
for (int i = 0; i < params.n_keep; i++) { | |
LOG_CNT("%s", common_token_to_piece(ctx, embd_inp[i]).c_str()); | |
} | |
LOG_CNT("'\n"); | |
} | |
LOG_INF("\n"); | |
} | |
// ctrl+C handling | |
{ | |
struct sigaction sigint_action; | |
sigint_action.sa_handler = sigint_handler; | |
sigemptyset (&sigint_action.sa_mask); | |
sigint_action.sa_flags = 0; | |
sigaction(SIGINT, &sigint_action, NULL); | |
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL { | |
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false; | |
}; | |
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true); | |
} | |
if (params.interactive) { | |
LOG_INF("%s: interactive mode on.\n", __func__); | |
if (!params.antiprompt.empty()) { | |
for (const auto & antiprompt : params.antiprompt) { | |
LOG_INF("Reverse prompt: '%s'\n", antiprompt.c_str()); | |
if (params.verbose_prompt) { | |
auto tmp = common_tokenize(ctx, antiprompt, false, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); | |
} | |
} | |
} | |
} | |
if (params.input_prefix_bos) { | |
LOG_INF("Input prefix with BOS\n"); | |
} | |
if (!params.input_prefix.empty()) { | |
LOG_INF("Input prefix: '%s'\n", params.input_prefix.c_str()); | |
if (params.verbose_prompt) { | |
auto tmp = common_tokenize(ctx, params.input_prefix, true, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); | |
} | |
} | |
} | |
if (!params.input_suffix.empty()) { | |
LOG_INF("Input suffix: '%s'\n", params.input_suffix.c_str()); | |
if (params.verbose_prompt) { | |
auto tmp = common_tokenize(ctx, params.input_suffix, false, true); | |
for (int i = 0; i < (int) tmp.size(); i++) { | |
LOG_INF("%6d -> '%s'\n", tmp[i], common_token_to_piece(ctx, tmp[i]).c_str()); | |
} | |
} | |
} | |
} | |
smpl = common_sampler_init(model, sparams); | |
if (!smpl) { | |
LOG_ERR("%s: failed to initialize sampling subsystem\n", __func__); | |
return 1; | |
} | |
LOG_INF("sampler seed: %u\n", common_sampler_get_seed(smpl)); | |
LOG_INF("sampler params: \n%s\n", sparams.print().c_str()); | |
LOG_INF("sampler chain: %s\n", common_sampler_print(smpl).c_str()); | |
LOG_INF("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep); | |
// group-attention state | |
// number of grouped KV tokens so far (used only if params.grp_attn_n > 1) | |
int ga_i = 0; | |
const int ga_n = params.grp_attn_n; | |
const int ga_w = params.grp_attn_w; | |
if (ga_n != 1) { | |
GGML_ASSERT(ga_n > 0 && "grp_attn_n must be positive"); // NOLINT | |
GGML_ASSERT(ga_w % ga_n == 0 && "grp_attn_w must be a multiple of grp_attn_n"); // NOLINT | |
//GGML_ASSERT(n_ctx_train % ga_w == 0 && "n_ctx_train must be a multiple of grp_attn_w"); // NOLINT | |
//GGML_ASSERT(n_ctx >= n_ctx_train * ga_n && "n_ctx must be at least n_ctx_train * grp_attn_n"); // NOLINT | |
LOG_INF("self-extend: n_ctx_train = %d, grp_attn_n = %d, grp_attn_w = %d\n", n_ctx_train, ga_n, ga_w); | |
} | |
LOG_INF("\n"); | |
if (params.interactive) { | |
const char * control_message; | |
if (params.multiline_input) { | |
control_message = " - To return control to the AI, end your input with '\\'.\n" | |
" - To return control without starting a new line, end your input with '/'.\n"; | |
} else { | |
control_message = " - Press Return to return control to the AI.\n" | |
" - To return control without starting a new line, end your input with '/'.\n" | |
" - If you want to submit another line, end your input with '\\'.\n"; | |
} | |
LOG_INF("== Running in interactive mode. ==\n"); | |
LOG_INF( " - Press Ctrl+C to interject at any time.\n"); | |
LOG_INF( "%s\n", control_message); | |
is_interacting = params.interactive_first; | |
} | |
bool is_antiprompt = false; | |
bool input_echo = true; | |
bool display = true; | |
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size(); | |
int n_past = 0; | |
int n_remain = params.n_predict; | |
int n_consumed = 0; | |
int n_session_consumed = 0; | |
std::vector<int> input_tokens; g_input_tokens = &input_tokens; | |
std::vector<int> output_tokens; g_output_tokens = &output_tokens; | |
std::ostringstream output_ss; g_output_ss = &output_ss; | |
std::ostringstream assistant_ss; // for storing current assistant message, used in conversation mode | |
// the first thing we will do is to output the prompt, so set color accordingly | |
console::set_display(console::prompt); | |
display = params.display_prompt; | |
std::vector<llama_token> embd; | |
// tokenized antiprompts | |
std::vector<std::vector<llama_token>> antiprompt_ids; | |
antiprompt_ids.reserve(params.antiprompt.size()); | |
for (const std::string & antiprompt : params.antiprompt) { | |
antiprompt_ids.emplace_back(::common_tokenize(ctx, antiprompt, false, true)); | |
} | |
if (llama_model_has_encoder(model)) { | |
int enc_input_size = embd_inp.size(); | |
llama_token * enc_input_buf = embd_inp.data(); | |
if (llama_encode(ctx, llama_batch_get_one(enc_input_buf, enc_input_size))) { | |
LOG_ERR("%s : failed to eval\n", __func__); | |
return 1; | |
} | |
llama_token decoder_start_token_id = llama_model_decoder_start_token(model); | |
if (decoder_start_token_id == -1) { | |
decoder_start_token_id = llama_token_bos(model); | |
} | |
embd_inp.clear(); | |
embd_inp.push_back(decoder_start_token_id); | |
} | |
while ((n_remain != 0 && !is_antiprompt) || params.interactive) { | |
// predict | |
if (!embd.empty()) { | |
// Note: (n_ctx - 4) here is to match the logic for commandline prompt handling via | |
// --prompt or --file which uses the same value. | |
int max_embd_size = n_ctx - 4; | |
// Ensure the input doesn't exceed the context size by truncating embd if necessary. | |
if ((int) embd.size() > max_embd_size) { | |
const int skipped_tokens = (int) embd.size() - max_embd_size; | |
embd.resize(max_embd_size); | |
console::set_display(console::error); | |
LOG_WRN("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : ""); | |
console::set_display(console::reset); | |
} | |
if (ga_n == 1) { | |
// infinite text generation via context shifting | |
// if we run out of context: | |
// - take the n_keep first tokens from the original prompt (via n_past) | |
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches | |
if (n_past + (int) embd.size() >= n_ctx) { | |
if (!params.ctx_shift){ | |
LOG_DBG("\n\n%s: context full and context shift is disabled => stopping\n", __func__); | |
break; | |
} | |
if (params.n_predict == -2) { | |
LOG_DBG("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict); | |
break; | |
} | |
const int n_left = n_past - params.n_keep; | |
const int n_discard = n_left/2; | |
LOG_DBG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n", | |
n_past, n_left, n_ctx, params.n_keep, n_discard); | |
llama_kv_cache_seq_rm (ctx, 0, params.n_keep , params.n_keep + n_discard); | |
llama_kv_cache_seq_add(ctx, 0, params.n_keep + n_discard, n_past, -n_discard); | |
n_past -= n_discard; | |
LOG_DBG("after swap: n_past = %d\n", n_past); | |
LOG_DBG("embd: %s\n", string_from(ctx, embd).c_str()); | |
LOG_DBG("clear session path\n"); | |
path_session.clear(); | |
} | |
} else { | |
// context extension via Self-Extend | |
while (n_past >= ga_i + ga_w) { | |
const int ib = (ga_n*ga_i)/ga_w; | |
const int bd = (ga_w/ga_n)*(ga_n - 1); | |
const int dd = (ga_w/ga_n) - ib*bd - ga_w; | |
LOG_DBG("\n"); | |
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i, n_past, ib*bd, ga_i + ib*bd, n_past + ib*bd); | |
LOG_DBG("div: [%6d, %6d] / %6d -> [%6d, %6d]\n", ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n, (ga_i + ib*bd)/ga_n, (ga_i + ib*bd + ga_w)/ga_n); | |
LOG_DBG("shift: [%6d, %6d] + %6d -> [%6d, %6d]\n", ga_i + ib*bd + ga_w, n_past + ib*bd, dd, ga_i + ib*bd + ga_w + dd, n_past + ib*bd + dd); | |
llama_kv_cache_seq_add(ctx, 0, ga_i, n_past, ib*bd); | |
llama_kv_cache_seq_div(ctx, 0, ga_i + ib*bd, ga_i + ib*bd + ga_w, ga_n); | |
llama_kv_cache_seq_add(ctx, 0, ga_i + ib*bd + ga_w, n_past + ib*bd, dd); | |
n_past -= bd; | |
ga_i += ga_w/ga_n; | |
LOG_DBG("\nn_past_old = %d, n_past = %d, ga_i = %d\n\n", n_past + bd, n_past, ga_i); | |
} | |
} | |
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past) | |
if (n_session_consumed < (int) session_tokens.size()) { | |
size_t i = 0; | |
for ( ; i < embd.size(); i++) { | |
if (embd[i] != session_tokens[n_session_consumed]) { | |
session_tokens.resize(n_session_consumed); | |
break; | |
} | |
n_past++; | |
n_session_consumed++; | |
if (n_session_consumed >= (int) session_tokens.size()) { | |
++i; | |
break; | |
} | |
} | |
if (i > 0) { | |
embd.erase(embd.begin(), embd.begin() + i); | |
} | |
} | |
for (int i = 0; i < (int) embd.size(); i += params.n_batch) { | |
int n_eval = (int) embd.size() - i; | |
if (n_eval > params.n_batch) { | |
n_eval = params.n_batch; | |
} | |
LOG_DBG("eval: %s\n", string_from(ctx, embd).c_str()); | |
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval))) { | |
LOG_ERR("%s : failed to eval\n", __func__); | |
return 1; | |
} | |
n_past += n_eval; | |
LOG_DBG("n_past = %d\n", n_past); | |
// Display total tokens alongside total time | |
if (params.n_print > 0 && n_past % params.n_print == 0) { | |
LOG_DBG("\n\033[31mTokens consumed so far = %d / %d \033[0m\n", n_past, n_ctx); | |
} | |
} | |
if (!embd.empty() && !path_session.empty()) { | |
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end()); | |
n_session_consumed = session_tokens.size(); | |
} | |
} | |
embd.clear(); | |
if ((int) embd_inp.size() <= n_consumed && !is_interacting) { | |
// optionally save the session on first sample (for faster prompt loading next time) | |
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) { | |
need_to_save_session = false; | |
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); | |
LOG_DBG("saved session to %s\n", path_session.c_str()); | |
} | |
const llama_token id = common_sampler_sample(smpl, ctx, -1); | |
common_sampler_accept(smpl, id, /* accept_grammar= */ true); | |
// LOG_DBG("last: %s\n", string_from(ctx, smpl->prev.to_vector()).c_str()); | |
embd.push_back(id); | |
// echo this to console | |
input_echo = true; | |
// decrement remaining sampling budget | |
--n_remain; | |
LOG_DBG("n_remain: %d\n", n_remain); | |
} else { | |
// some user input remains from prompt or interaction, forward it to processing | |
LOG_DBG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed); | |
while ((int) embd_inp.size() > n_consumed) { | |
embd.push_back(embd_inp[n_consumed]); | |
// push the prompt in the sampling context in order to apply repetition penalties later | |
// for the prompt, we don't apply grammar rules | |
common_sampler_accept(smpl, embd_inp[n_consumed], /* accept_grammar= */ false); | |
++n_consumed; | |
if ((int) embd.size() >= params.n_batch) { | |
break; | |
} | |
} | |
} | |
// display text | |
if (input_echo && display) { | |
for (auto id : embd) { | |
const std::string token_str = common_token_to_piece(ctx, id, params.special); | |
// Console/Stream Output | |
LOG("%s", token_str.c_str()); | |
// Record Displayed Tokens To Log | |
// Note: Generated tokens are created one by one hence this check | |
if (embd.size() > 1) { | |
// Incoming Requested Tokens | |
input_tokens.push_back(id); | |
} else { | |
// Outgoing Generated Tokens | |
output_tokens.push_back(id); | |
output_ss << token_str; | |
} | |
} | |
} | |
// reset color to default if there is no pending user input | |
if (input_echo && (int) embd_inp.size() == n_consumed) { | |
console::set_display(console::reset); | |
display = true; | |
} | |
// if not currently processing queued inputs; | |
if ((int) embd_inp.size() <= n_consumed) { | |
// check for reverse prompt in the last n_prev tokens | |
if (!params.antiprompt.empty()) { | |
const int n_prev = 32; | |
const std::string last_output = common_sampler_prev_str(smpl, ctx, n_prev); | |
is_antiprompt = false; | |
// Check if each of the reverse prompts appears at the end of the output. | |
// If we're not running interactively, the reverse prompt might be tokenized with some following characters | |
// so we'll compensate for that by widening the search window a bit. | |
for (std::string & antiprompt : params.antiprompt) { | |
size_t extra_padding = params.interactive ? 0 : 2; | |
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding) | |
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding) | |
: 0; | |
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) { | |
if (params.interactive) { | |
is_interacting = true; | |
} | |
is_antiprompt = true; | |
break; | |
} | |
} | |
// check for reverse prompt using special tokens | |
llama_token last_token = common_sampler_last(smpl); | |
for (std::vector<llama_token> ids : antiprompt_ids) { | |
if (ids.size() == 1 && last_token == ids[0]) { | |
if (params.interactive) { | |
is_interacting = true; | |
} | |
is_antiprompt = true; | |
break; | |
} | |
} | |
if (is_antiprompt) { | |
LOG_DBG("found antiprompt: %s\n", last_output.c_str()); | |
} | |
} | |
// deal with end of generation tokens in interactive mode | |
if (llama_token_is_eog(model, common_sampler_last(smpl))) { | |
LOG_DBG("found an EOG token\n"); | |
if (params.interactive) { | |
if (!params.antiprompt.empty()) { | |
// tokenize and inject first reverse prompt | |
const auto first_antiprompt = common_tokenize(ctx, params.antiprompt.front(), false, true); | |
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end()); | |
is_antiprompt = true; | |
} | |
if (params.enable_chat_template) { | |
chat_add_and_format(model, chat_msgs, "assistant", assistant_ss.str()); | |
} | |
is_interacting = true; | |
LOG("\n"); | |
} | |
} | |
// if current token is not EOG, we add it to current assistant message | |
if (params.conversation) { | |
const auto id = common_sampler_last(smpl); | |
assistant_ss << common_token_to_piece(ctx, id, false); | |
} | |
if (n_past > 0 && is_interacting) { | |
LOG_DBG("waiting for user input\n"); | |
if (params.conversation) { | |
LOG("\n> "); | |
} | |
if (params.input_prefix_bos) { | |
LOG_DBG("adding input prefix BOS token\n"); | |
embd_inp.push_back(llama_token_bos(model)); | |
} | |
std::string buffer; | |
if (!params.input_prefix.empty() && !params.conversation) { | |
LOG_DBG("appending input prefix: '%s'\n", params.input_prefix.c_str()); | |
LOG("%s", params.input_prefix.c_str()); | |
} | |
// color user input only | |
console::set_display(console::user_input); | |
display = params.display_prompt; | |
std::string line; | |
bool another_line = true; | |
do { | |
another_line = console::readline(line, params.multiline_input); | |
buffer += line; | |
} while (another_line); | |
// done taking input, reset color | |
console::set_display(console::reset); | |
display = true; | |
// Add tokens to embd only if the input buffer is non-empty | |
// Entering a empty line lets the user pass control back | |
if (buffer.length() > 1) { | |
// append input suffix if any | |
if (!params.input_suffix.empty() && !params.conversation) { | |
LOG_DBG("appending input suffix: '%s'\n", params.input_suffix.c_str()); | |
LOG("%s", params.input_suffix.c_str()); | |
} | |
LOG_DBG("buffer: '%s'\n", buffer.c_str()); | |
const size_t original_size = embd_inp.size(); | |
if (params.escape) { | |
string_process_escapes(buffer); | |
} | |
bool format_chat = params.conversation && params.enable_chat_template; | |
std::string user_inp = format_chat | |
? chat_add_and_format(model, chat_msgs, "user", std::move(buffer)) | |
: std::move(buffer); | |
// TODO: one inconvenient of current chat template implementation is that we can't distinguish between user input and special tokens (prefix/postfix) | |
const auto line_pfx = common_tokenize(ctx, params.input_prefix, false, true); | |
const auto line_inp = common_tokenize(ctx, user_inp, false, format_chat); | |
const auto line_sfx = common_tokenize(ctx, params.input_suffix, false, true); | |
LOG_DBG("input tokens: %s\n", string_from(ctx, line_inp).c_str()); | |
// if user stop generation mid-way, we must add EOT to finish model's last response | |
if (need_insert_eot && format_chat) { | |
llama_token eot = llama_token_eot(model); | |
embd_inp.push_back(eot == -1 ? llama_token_eos(model) : eot); | |
need_insert_eot = false; | |
} | |
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end()); | |
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end()); | |
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end()); | |
for (size_t i = original_size; i < embd_inp.size(); ++i) { | |
const llama_token token = embd_inp[i]; | |
output_tokens.push_back(token); | |
output_ss << common_token_to_piece(ctx, token); | |
} | |
// reset assistant message | |
assistant_ss.str(""); | |
n_remain -= line_inp.size(); | |
LOG_DBG("n_remain: %d\n", n_remain); | |
} else { | |
LOG_DBG("empty line, passing control back\n"); | |
} | |
input_echo = false; // do not echo this again | |
} | |
if (n_past > 0) { | |
if (is_interacting) { | |
common_sampler_reset(smpl); | |
} | |
is_interacting = false; | |
} | |
} | |
// end of generation | |
if (!embd.empty() && llama_token_is_eog(model, embd.back()) && !(params.interactive)) { | |
LOG(" [end of text]\n"); | |
break; | |
} | |
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached. | |
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size). | |
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) { | |
n_remain = params.n_predict; | |
is_interacting = true; | |
} | |
} | |
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) { | |
LOG("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str()); | |
llama_state_save_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size()); | |
} | |
LOG("\n\n"); | |
common_perf_print(ctx, smpl); | |
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens); | |
common_sampler_free(smpl); | |
llama_free(ctx); | |
llama_free_model(model); | |
llama_backend_free(); | |
ggml_threadpool_free(threadpool); | |
ggml_threadpool_free(threadpool_batch); | |
return 0; | |
} | |