#include "common.cuh" #include "count-equal.cuh" #include template static __global__ void count_equal(const T * __restrict__ x, const T * __restrict__ y, int64_t * __restrict__ dst, const int64_t dk, const int64_t k) { const int64_t i0 = (int64_t) blockIdx.x*dk; const int64_t i1 = min(i0 + dk, k); int nequal = 0; for (int64_t i = i0 + threadIdx.x; i < i1; i += WARP_SIZE) { const T xi = x[i]; const T yi = y[i]; nequal += xi == yi; } nequal = warp_reduce_sum(nequal); if (threadIdx.x != 0) { return; } atomicAdd((int *) dst, nequal); } void ggml_cuda_count_equal(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { const ggml_tensor * src0 = dst->src[0]; const ggml_tensor * src1 = dst->src[1]; GGML_ASSERT(src0->type == src1->type); GGML_ASSERT( dst->type == GGML_TYPE_I64); GGML_ASSERT(ggml_are_same_shape(src0, src1)); GGML_ASSERT(ggml_is_contiguous(src0)); GGML_ASSERT(ggml_is_contiguous(src1)); GGML_ASSERT(ggml_is_contiguous(dst)); int64_t * dst_d = (int64_t *) dst->data; cudaStream_t stream = ctx.stream(); const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm; const int64_t ne = ggml_nelements(src0); GGML_ASSERT(ne < (1 << 30) && "atomicAdd implementation only supports int"); const int64_t dne = GGML_PAD(ne / (4*nsm), CUDA_COUNT_EQUAL_CHUNK_SIZE); CUDA_CHECK(cudaMemsetAsync(dst_d, 0, ggml_nbytes(dst), stream)); const dim3 blocks_dim(WARP_SIZE, 1, 1); const dim3 blocks_num(std::min((int64_t)4*nsm, (ne + CUDA_COUNT_EQUAL_CHUNK_SIZE - 1)/CUDA_COUNT_EQUAL_CHUNK_SIZE), 1, 1); switch (src0->type) { case GGML_TYPE_I32: { const int * src0_d = (const int *) src0->data; const int * src1_d = (const int *) src1->data; count_equal<<>>(src0_d, src1_d, dst_d, dne, ne); } break; default: GGML_ASSERT(false); break; } }