File size: 5,600 Bytes
6da6215
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D

from paddleseg.cvlibs import manager
from paddleseg.utils import utils


class ConvBlock(nn.Layer):
    def __init__(self, input_channels, output_channels, groups, name=None):
        super(ConvBlock, self).__init__()

        self.groups = groups
        self._conv_1 = Conv2D(
            in_channels=input_channels,
            out_channels=output_channels,
            kernel_size=3,
            stride=1,
            padding=1,
            weight_attr=ParamAttr(name=name + "1_weights"),
            bias_attr=False)
        if groups == 2 or groups == 3 or groups == 4:
            self._conv_2 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(name=name + "2_weights"),
                bias_attr=False)
        if groups == 3 or groups == 4:
            self._conv_3 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(name=name + "3_weights"),
                bias_attr=False)
        if groups == 4:
            self._conv_4 = Conv2D(
                in_channels=output_channels,
                out_channels=output_channels,
                kernel_size=3,
                stride=1,
                padding=1,
                weight_attr=ParamAttr(name=name + "4_weights"),
                bias_attr=False)

        self._pool = MaxPool2D(
            kernel_size=2, stride=2, padding=0, return_mask=True)

    def forward(self, inputs):
        x = self._conv_1(inputs)
        x = F.relu(x)
        if self.groups == 2 or self.groups == 3 or self.groups == 4:
            x = self._conv_2(x)
            x = F.relu(x)
        if self.groups == 3 or self.groups == 4:
            x = self._conv_3(x)
            x = F.relu(x)
        if self.groups == 4:
            x = self._conv_4(x)
            x = F.relu(x)
        skip = x
        x, max_indices = self._pool(x)
        return x, max_indices, skip


class VGGNet(nn.Layer):
    def __init__(self, input_channels=3, layers=11, pretrained=None):
        super(VGGNet, self).__init__()
        self.pretrained = pretrained

        self.layers = layers
        self.vgg_configure = {
            11: [1, 1, 2, 2, 2],
            13: [2, 2, 2, 2, 2],
            16: [2, 2, 3, 3, 3],
            19: [2, 2, 4, 4, 4]
        }
        assert self.layers in self.vgg_configure.keys(), \
            "supported layers are {} but input layer is {}".format(
                self.vgg_configure.keys(), layers)
        self.groups = self.vgg_configure[self.layers]

        # matting的第一层卷积输入为4通道,初始化是直接初始化为0
        self._conv_block_1 = ConvBlock(
            input_channels, 64, self.groups[0], name="conv1_")
        self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
        self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
        self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
        self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")

        # 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化
        self._conv_6 = Conv2D(
            512, 512, kernel_size=3, padding=1, bias_attr=False)

        self.init_weight()

    def forward(self, inputs):
        fea_list = []
        ids_list = []
        x, ids, skip = self._conv_block_1(inputs)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_2(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_3(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_4(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x, ids, skip = self._conv_block_5(x)
        fea_list.append(skip)
        ids_list.append(ids)
        x = F.relu(self._conv_6(x))
        fea_list.append(x)
        return fea_list

    def init_weight(self):
        if self.pretrained is not None:
            utils.load_pretrained_model(self, self.pretrained)


@manager.BACKBONES.add_component
def VGG11(**args):
    model = VGGNet(layers=11, **args)
    return model


@manager.BACKBONES.add_component
def VGG13(**args):
    model = VGGNet(layers=13, **args)
    return model


@manager.BACKBONES.add_component
def VGG16(**args):
    model = VGGNet(layers=16, **args)
    return model


@manager.BACKBONES.add_component
def VGG19(**args):
    model = VGGNet(layers=19, **args)
    return model