Spaces:
Runtime error
Runtime error
File size: 5,600 Bytes
6da6215 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle
from paddle import ParamAttr
import paddle.nn as nn
import paddle.nn.functional as F
from paddle.nn import Conv2D, BatchNorm, Linear, Dropout
from paddle.nn import AdaptiveAvgPool2D, MaxPool2D, AvgPool2D
from paddleseg.cvlibs import manager
from paddleseg.utils import utils
class ConvBlock(nn.Layer):
def __init__(self, input_channels, output_channels, groups, name=None):
super(ConvBlock, self).__init__()
self.groups = groups
self._conv_1 = Conv2D(
in_channels=input_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "1_weights"),
bias_attr=False)
if groups == 2 or groups == 3 or groups == 4:
self._conv_2 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "2_weights"),
bias_attr=False)
if groups == 3 or groups == 4:
self._conv_3 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "3_weights"),
bias_attr=False)
if groups == 4:
self._conv_4 = Conv2D(
in_channels=output_channels,
out_channels=output_channels,
kernel_size=3,
stride=1,
padding=1,
weight_attr=ParamAttr(name=name + "4_weights"),
bias_attr=False)
self._pool = MaxPool2D(
kernel_size=2, stride=2, padding=0, return_mask=True)
def forward(self, inputs):
x = self._conv_1(inputs)
x = F.relu(x)
if self.groups == 2 or self.groups == 3 or self.groups == 4:
x = self._conv_2(x)
x = F.relu(x)
if self.groups == 3 or self.groups == 4:
x = self._conv_3(x)
x = F.relu(x)
if self.groups == 4:
x = self._conv_4(x)
x = F.relu(x)
skip = x
x, max_indices = self._pool(x)
return x, max_indices, skip
class VGGNet(nn.Layer):
def __init__(self, input_channels=3, layers=11, pretrained=None):
super(VGGNet, self).__init__()
self.pretrained = pretrained
self.layers = layers
self.vgg_configure = {
11: [1, 1, 2, 2, 2],
13: [2, 2, 2, 2, 2],
16: [2, 2, 3, 3, 3],
19: [2, 2, 4, 4, 4]
}
assert self.layers in self.vgg_configure.keys(), \
"supported layers are {} but input layer is {}".format(
self.vgg_configure.keys(), layers)
self.groups = self.vgg_configure[self.layers]
# matting的第一层卷积输入为4通道,初始化是直接初始化为0
self._conv_block_1 = ConvBlock(
input_channels, 64, self.groups[0], name="conv1_")
self._conv_block_2 = ConvBlock(64, 128, self.groups[1], name="conv2_")
self._conv_block_3 = ConvBlock(128, 256, self.groups[2], name="conv3_")
self._conv_block_4 = ConvBlock(256, 512, self.groups[3], name="conv4_")
self._conv_block_5 = ConvBlock(512, 512, self.groups[4], name="conv5_")
# 这一层的初始化需要利用vgg fc6的参数转换后进行初始化,可以暂时不考虑初始化
self._conv_6 = Conv2D(
512, 512, kernel_size=3, padding=1, bias_attr=False)
self.init_weight()
def forward(self, inputs):
fea_list = []
ids_list = []
x, ids, skip = self._conv_block_1(inputs)
fea_list.append(skip)
ids_list.append(ids)
x, ids, skip = self._conv_block_2(x)
fea_list.append(skip)
ids_list.append(ids)
x, ids, skip = self._conv_block_3(x)
fea_list.append(skip)
ids_list.append(ids)
x, ids, skip = self._conv_block_4(x)
fea_list.append(skip)
ids_list.append(ids)
x, ids, skip = self._conv_block_5(x)
fea_list.append(skip)
ids_list.append(ids)
x = F.relu(self._conv_6(x))
fea_list.append(x)
return fea_list
def init_weight(self):
if self.pretrained is not None:
utils.load_pretrained_model(self, self.pretrained)
@manager.BACKBONES.add_component
def VGG11(**args):
model = VGGNet(layers=11, **args)
return model
@manager.BACKBONES.add_component
def VGG13(**args):
model = VGGNet(layers=13, **args)
return model
@manager.BACKBONES.add_component
def VGG16(**args):
model = VGGNet(layers=16, **args)
return model
@manager.BACKBONES.add_component
def VGG19(**args):
model = VGGNet(layers=19, **args)
return model
|