Spaces:
Runtime error
Runtime error
# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
import random | |
import cv2 | |
import numpy as np | |
from paddleseg.transforms import functional | |
from paddleseg.cvlibs import manager | |
from PIL import Image | |
class Compose: | |
""" | |
Do transformation on input data with corresponding pre-processing and augmentation operations. | |
The shape of input data to all operations is [height, width, channels]. | |
""" | |
def __init__(self, transforms, to_rgb=True): | |
if not isinstance(transforms, list): | |
raise TypeError('The transforms must be a list!') | |
self.transforms = transforms | |
self.to_rgb = to_rgb | |
def __call__(self, data): | |
""" | |
Args: | |
data (dict): The data to transform. | |
Returns: | |
dict: Data after transformation | |
""" | |
if 'trans_info' not in data: | |
data['trans_info'] = [] | |
for op in self.transforms: | |
data = op(data) | |
if data is None: | |
return None | |
data['img'] = np.transpose(data['img'], (2, 0, 1)) | |
for key in data.get('gt_fields', []): | |
if len(data[key].shape) == 2: | |
continue | |
data[key] = np.transpose(data[key], (2, 0, 1)) | |
return data | |
class LoadImages: | |
def __init__(self, to_rgb=True): | |
self.to_rgb = to_rgb | |
def __call__(self, data): | |
if isinstance(data['img'], str): | |
data['img'] = cv2.imread(data['img']) | |
for key in data.get('gt_fields', []): | |
if isinstance(data[key], str): | |
data[key] = cv2.imread(data[key], cv2.IMREAD_UNCHANGED) | |
# if alpha and trimap has 3 channels, extract one. | |
if key in ['alpha', 'trimap']: | |
if len(data[key].shape) > 2: | |
data[key] = data[key][:, :, 0] | |
if self.to_rgb: | |
data['img'] = cv2.cvtColor(data['img'], cv2.COLOR_BGR2RGB) | |
for key in data.get('gt_fields', []): | |
if len(data[key].shape) == 2: | |
continue | |
data[key] = cv2.cvtColor(data[key], cv2.COLOR_BGR2RGB) | |
return data | |
class Resize: | |
def __init__(self, target_size=(512, 512)): | |
if isinstance(target_size, list) or isinstance(target_size, tuple): | |
if len(target_size) != 2: | |
raise ValueError( | |
'`target_size` should include 2 elements, but it is {}'. | |
format(target_size)) | |
else: | |
raise TypeError( | |
"Type of `target_size` is invalid. It should be list or tuple, but it is {}" | |
.format(type(target_size))) | |
self.target_size = target_size | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize(data['img'], self.target_size) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.resize(data[key], self.target_size) | |
return data | |
class ResizeByLong: | |
""" | |
Resize the long side of an image to given size, and then scale the other side proportionally. | |
Args: | |
long_size (int): The target size of long side. | |
""" | |
def __init__(self, long_size): | |
self.long_size = long_size | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize_long(data['img'], self.long_size) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.resize_long(data[key], self.long_size) | |
return data | |
class ResizeByShort: | |
""" | |
Resize the short side of an image to given size, and then scale the other side proportionally. | |
Args: | |
short_size (int): The target size of short side. | |
""" | |
def __init__(self, short_size): | |
self.short_size = short_size | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize_short(data['img'], self.short_size) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.resize_short(data[key], self.short_size) | |
return data | |
class ResizeToIntMult: | |
""" | |
Resize to some int muitple, d.g. 32. | |
""" | |
def __init__(self, mult_int=32): | |
self.mult_int = mult_int | |
def __call__(self, data): | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
h, w = data['img'].shape[0:2] | |
rw = w - w % 32 | |
rh = h - h % 32 | |
data['img'] = functional.resize(data['img'], (rw, rh)) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.resize(data[key], (rw, rh)) | |
return data | |
class Normalize: | |
""" | |
Normalize an image. | |
Args: | |
mean (list, optional): The mean value of a data set. Default: [0.5, 0.5, 0.5]. | |
std (list, optional): The standard deviation of a data set. Default: [0.5, 0.5, 0.5]. | |
Raises: | |
ValueError: When mean/std is not list or any value in std is 0. | |
""" | |
def __init__(self, mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5)): | |
self.mean = mean | |
self.std = std | |
if not (isinstance(self.mean, (list, tuple)) | |
and isinstance(self.std, (list, tuple))): | |
raise ValueError( | |
"{}: input type is invalid. It should be list or tuple".format( | |
self)) | |
from functools import reduce | |
if reduce(lambda x, y: x * y, self.std) == 0: | |
raise ValueError('{}: std is invalid!'.format(self)) | |
def __call__(self, data): | |
mean = np.array(self.mean)[np.newaxis, np.newaxis, :] | |
std = np.array(self.std)[np.newaxis, np.newaxis, :] | |
data['img'] = functional.normalize(data['img'], mean, std) | |
if 'fg' in data.get('gt_fields', []): | |
data['fg'] = functional.normalize(data['fg'], mean, std) | |
if 'bg' in data.get('gt_fields', []): | |
data['bg'] = functional.normalize(data['bg'], mean, std) | |
return data | |
class RandomCropByAlpha: | |
""" | |
Randomly crop while centered on uncertain area by a certain probability. | |
Args: | |
crop_size (tuple|list): The size you want to crop from image. | |
p (float): The probability centered on uncertain area. | |
""" | |
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640)), | |
prob=0.5): | |
self.crop_size = crop_size | |
self.prob = prob | |
def __call__(self, data): | |
idex = np.random.randint(low=0, high=len(self.crop_size)) | |
crop_w, crop_h = self.crop_size[idex] | |
img_h = data['img'].shape[0] | |
img_w = data['img'].shape[1] | |
if np.random.rand() < self.prob: | |
crop_center = np.where((data['alpha'] > 0) & (data['alpha'] < 255)) | |
center_h_array, center_w_array = crop_center | |
if len(center_h_array) == 0: | |
return data | |
rand_ind = np.random.randint(len(center_h_array)) | |
center_h = center_h_array[rand_ind] | |
center_w = center_w_array[rand_ind] | |
delta_h = crop_h // 2 | |
delta_w = crop_w // 2 | |
start_h = max(0, center_h - delta_h) | |
start_w = max(0, center_w - delta_w) | |
else: | |
start_h = 0 | |
start_w = 0 | |
if img_h > crop_h: | |
start_h = np.random.randint(img_h - crop_h + 1) | |
if img_w > crop_w: | |
start_w = np.random.randint(img_w - crop_w + 1) | |
end_h = min(img_h, start_h + crop_h) | |
end_w = min(img_w, start_w + crop_w) | |
data['img'] = data['img'][start_h:end_h, start_w:end_w] | |
for key in data.get('gt_fields', []): | |
data[key] = data[key][start_h:end_h, start_w:end_w] | |
return data | |
class RandomCrop: | |
""" | |
Randomly crop | |
Args: | |
crop_size (tuple|list): The size you want to crop from image. | |
""" | |
def __init__(self, crop_size=((320, 320), (480, 480), (640, 640))): | |
if not isinstance(crop_size[0], (list, tuple)): | |
crop_size = [crop_size] | |
self.crop_size = crop_size | |
def __call__(self, data): | |
idex = np.random.randint(low=0, high=len(self.crop_size)) | |
crop_w, crop_h = self.crop_size[idex] | |
img_h, img_w = data['img'].shape[0:2] | |
start_h = 0 | |
start_w = 0 | |
if img_h > crop_h: | |
start_h = np.random.randint(img_h - crop_h + 1) | |
if img_w > crop_w: | |
start_w = np.random.randint(img_w - crop_w + 1) | |
end_h = min(img_h, start_h + crop_h) | |
end_w = min(img_w, start_w + crop_w) | |
data['img'] = data['img'][start_h:end_h, start_w:end_w] | |
for key in data.get('gt_fields', []): | |
data[key] = data[key][start_h:end_h, start_w:end_w] | |
return data | |
class LimitLong: | |
""" | |
Limit the long edge of image. | |
If the long edge is larger than max_long, resize the long edge | |
to max_long, while scale the short edge proportionally. | |
If the long edge is smaller than min_long, resize the long edge | |
to min_long, while scale the short edge proportionally. | |
Args: | |
max_long (int, optional): If the long edge of image is larger than max_long, | |
it will be resize to max_long. Default: None. | |
min_long (int, optional): If the long edge of image is smaller than min_long, | |
it will be resize to min_long. Default: None. | |
""" | |
def __init__(self, max_long=None, min_long=None): | |
if max_long is not None: | |
if not isinstance(max_long, int): | |
raise TypeError( | |
"Type of `max_long` is invalid. It should be int, but it is {}" | |
.format(type(max_long))) | |
if min_long is not None: | |
if not isinstance(min_long, int): | |
raise TypeError( | |
"Type of `min_long` is invalid. It should be int, but it is {}" | |
.format(type(min_long))) | |
if (max_long is not None) and (min_long is not None): | |
if min_long > max_long: | |
raise ValueError( | |
'`max_long should not smaller than min_long, but they are {} and {}' | |
.format(max_long, min_long)) | |
self.max_long = max_long | |
self.min_long = min_long | |
def __call__(self, data): | |
h, w = data['img'].shape[:2] | |
long_edge = max(h, w) | |
target = long_edge | |
if (self.max_long is not None) and (long_edge > self.max_long): | |
target = self.max_long | |
elif (self.min_long is not None) and (long_edge < self.min_long): | |
target = self.min_long | |
if target != long_edge: | |
data['trans_info'].append(('resize', data['img'].shape[0:2])) | |
data['img'] = functional.resize_long(data['img'], target) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.resize_long(data[key], target) | |
return data | |
class RandomHorizontalFlip: | |
""" | |
Flip an image horizontally with a certain probability. | |
Args: | |
prob (float, optional): A probability of horizontally flipping. Default: 0.5. | |
""" | |
def __init__(self, prob=0.5): | |
self.prob = prob | |
def __call__(self, data): | |
if random.random() < self.prob: | |
data['img'] = functional.horizontal_flip(data['img']) | |
for key in data.get('gt_fields', []): | |
data[key] = functional.horizontal_flip(data[key]) | |
return data | |
class RandomBlur: | |
""" | |
Blurring an image by a Gaussian function with a certain probability. | |
Args: | |
prob (float, optional): A probability of blurring an image. Default: 0.1. | |
""" | |
def __init__(self, prob=0.1): | |
self.prob = prob | |
def __call__(self, data): | |
if self.prob <= 0: | |
n = 0 | |
elif self.prob >= 1: | |
n = 1 | |
else: | |
n = int(1.0 / self.prob) | |
if n > 0: | |
if np.random.randint(0, n) == 0: | |
radius = np.random.randint(3, 10) | |
if radius % 2 != 1: | |
radius = radius + 1 | |
if radius > 9: | |
radius = 9 | |
data['img'] = cv2.GaussianBlur(data['img'], (radius, radius), 0, | |
0) | |
for key in data.get('gt_fields', []): | |
data[key] = cv2.GaussianBlur(data[key], (radius, radius), 0, | |
0) | |
return data | |
class RandomDistort: | |
""" | |
Distort an image with random configurations. | |
Args: | |
brightness_range (float, optional): A range of brightness. Default: 0.5. | |
brightness_prob (float, optional): A probability of adjusting brightness. Default: 0.5. | |
contrast_range (float, optional): A range of contrast. Default: 0.5. | |
contrast_prob (float, optional): A probability of adjusting contrast. Default: 0.5. | |
saturation_range (float, optional): A range of saturation. Default: 0.5. | |
saturation_prob (float, optional): A probability of adjusting saturation. Default: 0.5. | |
hue_range (int, optional): A range of hue. Default: 18. | |
hue_prob (float, optional): A probability of adjusting hue. Default: 0.5. | |
""" | |
def __init__(self, | |
brightness_range=0.5, | |
brightness_prob=0.5, | |
contrast_range=0.5, | |
contrast_prob=0.5, | |
saturation_range=0.5, | |
saturation_prob=0.5, | |
hue_range=18, | |
hue_prob=0.5): | |
self.brightness_range = brightness_range | |
self.brightness_prob = brightness_prob | |
self.contrast_range = contrast_range | |
self.contrast_prob = contrast_prob | |
self.saturation_range = saturation_range | |
self.saturation_prob = saturation_prob | |
self.hue_range = hue_range | |
self.hue_prob = hue_prob | |
def __call__(self, data): | |
brightness_lower = 1 - self.brightness_range | |
brightness_upper = 1 + self.brightness_range | |
contrast_lower = 1 - self.contrast_range | |
contrast_upper = 1 + self.contrast_range | |
saturation_lower = 1 - self.saturation_range | |
saturation_upper = 1 + self.saturation_range | |
hue_lower = -self.hue_range | |
hue_upper = self.hue_range | |
ops = [ | |
functional.brightness, functional.contrast, functional.saturation, | |
functional.hue | |
] | |
random.shuffle(ops) | |
params_dict = { | |
'brightness': { | |
'brightness_lower': brightness_lower, | |
'brightness_upper': brightness_upper | |
}, | |
'contrast': { | |
'contrast_lower': contrast_lower, | |
'contrast_upper': contrast_upper | |
}, | |
'saturation': { | |
'saturation_lower': saturation_lower, | |
'saturation_upper': saturation_upper | |
}, | |
'hue': { | |
'hue_lower': hue_lower, | |
'hue_upper': hue_upper | |
} | |
} | |
prob_dict = { | |
'brightness': self.brightness_prob, | |
'contrast': self.contrast_prob, | |
'saturation': self.saturation_prob, | |
'hue': self.hue_prob | |
} | |
im = data['img'].astype('uint8') | |
im = Image.fromarray(im) | |
for id in range(len(ops)): | |
params = params_dict[ops[id].__name__] | |
params['im'] = im | |
prob = prob_dict[ops[id].__name__] | |
if np.random.uniform(0, 1) < prob: | |
im = ops[id](**params) | |
data['img'] = np.asarray(im) | |
for key in data.get('gt_fields', []): | |
if key in ['alpha', 'trimap']: | |
continue | |
else: | |
im = data[key].astype('uint8') | |
im = Image.fromarray(im) | |
for id in range(len(ops)): | |
params = params_dict[ops[id].__name__] | |
params['im'] = im | |
prob = prob_dict[ops[id].__name__] | |
if np.random.uniform(0, 1) < prob: | |
im = ops[id](**params) | |
data[key] = np.asarray(im) | |
return data | |
if __name__ == "__main__": | |
transforms = [RandomDistort()] | |
transforms = Compose(transforms) | |
fg_path = '/ssd1/home/chenguowei01/github/PaddleSeg/contrib/matting/data/matting/human_matting/Distinctions-646/train/fg/13(2).png' | |
alpha_path = fg_path.replace('fg', 'alpha') | |
bg_path = '/ssd1/home/chenguowei01/github/PaddleSeg/contrib/matting/data/matting/human_matting/bg/unsplash_bg/attic/photo-1443884590026-2e4d21aee71c?crop=entropy&cs=tinysrgb&fit=max&fm=jpg&ixid=MnwxMjA3fDB8MXxzZWFyY2h8Nzh8fGF0dGljfGVufDB8fHx8MTYyOTY4MDcxNQ&ixlib=rb-1.2.1&q=80&w=400.jpg' | |
data = {} | |
data['fg'] = cv2.imread(fg_path) | |
data['bg'] = cv2.imread(bg_path) | |
h, w, c = data['fg'].shape | |
data['bg'] = cv2.resize(data['bg'], (w, h)) | |
alpha = cv2.imread(alpha_path) | |
data['alpha'] = alpha[:, :, 0] | |
alpha = alpha / 255. | |
data['img'] = alpha * data['fg'] + (1 - alpha) * data['bg'] | |
data['gt_fields'] = ['fg', 'bg'] | |
print(data['img'].shape) | |
for key in data['gt_fields']: | |
print(data[key].shape) | |
# import pdb | |
# pdb.set_trace() | |
data = transforms(data) | |
print(data['img'].dtype, data['img'].shape) | |
cv2.imwrite('distort_img.jpg', data['img'].transpose([1, 2, 0])) | |