Spaces:
Runtime error
Runtime error
import os | |
import random | |
import sys | |
from typing import Sequence, Mapping, Any, Union | |
import torch | |
from PIL import Image | |
from huggingface_hub import hf_hub_download | |
import spaces | |
import subprocess, sys | |
# --------------------------------------------------------------------------------- | |
# 🛠️ Monkey-patch для gradio_client: игнорируем булевы схемы и не падаем на TypeError | |
# --------------------------------------------------------------------------------- | |
import gradio_client.utils as _gc_utils | |
# Сохраняем оригинальные функции | |
_orig_js2pt = _gc_utils._json_schema_to_python_type | |
_orig_get_type = _gc_utils.get_type | |
def _safe_json_schema_to_python_type(schema, defs=None): | |
""" | |
Если schema — bool (True/False), возвращаем 'Any', | |
иначе — вызываем оригинальный код. | |
""" | |
if isinstance(schema, bool): | |
return "Any" | |
return _orig_js2pt(schema, defs) | |
def _safe_get_type(schema): | |
""" | |
Если schema — bool, возвращаем 'Any', | |
иначе — вызываем оригинальную функцию get_type. | |
""" | |
if isinstance(schema, bool): | |
return "Any" | |
return _orig_get_type(schema) | |
# Заменяем в модуле | |
_gc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type | |
_gc_utils.get_type = _safe_get_type | |
# --------------------------------------------------------------------------------- | |
# Дальше уже можно безопасно импортировать Gradio | |
import gradio | |
import gradio_client | |
import gradio as gr | |
print("gradio version:", gradio.__version__) | |
print("gradio_client version:", gradio_client.__version__) | |
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1a_256.onnx", local_dir="models/hyperswap") | |
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1b_256.onnx", local_dir="models/hyperswap") | |
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1c_256.onnx", local_dir="models/hyperswap") | |
hf_hub_download(repo_id="martintomov/comfy", filename="facedetection/yolov5l-face.pth", local_dir="models") | |
###hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection") | |
hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection") | |
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l") | |
hf_hub_download(repo_id="vladmandic/insightface-faceanalysis", filename="buffalo_l.zip", local_dir="models/insightface/models/buffalo_l") | |
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any: | |
"""Returns the value at the given index of a sequence or mapping. | |
If the object is a sequence (like list or string), returns the value at the given index. | |
If the object is a mapping (like a dictionary), returns the value at the index-th key. | |
Some return a dictionary, in these cases, we look for the "results" key | |
Args: | |
obj (Union[Sequence, Mapping]): The object to retrieve the value from. | |
index (int): The index of the value to retrieve. | |
Returns: | |
Any: The value at the given index. | |
Raises: | |
IndexError: If the index is out of bounds for the object and the object is not a mapping. | |
""" | |
try: | |
return obj[index] | |
except KeyError: | |
return obj["result"][index] | |
def find_path(name: str, path: str = None) -> str: | |
""" | |
Recursively looks at parent folders starting from the given path until it finds the given name. | |
Returns the path as a Path object if found, or None otherwise. | |
""" | |
# If no path is given, use the current working directory | |
if path is None: | |
path = os.getcwd() | |
# Check if the current directory contains the name | |
if name in os.listdir(path): | |
path_name = os.path.join(path, name) | |
print(f"{name} found: {path_name}") | |
return path_name | |
# Get the parent directory | |
parent_directory = os.path.dirname(path) | |
# If the parent directory is the same as the current directory, we've reached the root and stop the search | |
if parent_directory == path: | |
return None | |
# Recursively call the function with the parent directory | |
return find_path(name, parent_directory) | |
def add_comfyui_directory_to_sys_path() -> None: | |
""" | |
Add 'ComfyUI' to the sys.path | |
""" | |
comfyui_path = find_path("ComfyUI") | |
if comfyui_path is not None and os.path.isdir(comfyui_path): | |
sys.path.append(comfyui_path) | |
print(f"'{comfyui_path}' added to sys.path") | |
def add_extra_model_paths() -> None: | |
""" | |
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path. | |
""" | |
try: | |
from main import load_extra_path_config | |
except ImportError: | |
print( | |
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead." | |
) | |
from utils.extra_config import load_extra_path_config | |
extra_model_paths = find_path("extra_model_paths.yaml") | |
if extra_model_paths is not None: | |
load_extra_path_config(extra_model_paths) | |
else: | |
print("Could not find the extra_model_paths config file.") | |
add_comfyui_directory_to_sys_path() | |
add_extra_model_paths() | |
def import_custom_nodes() -> None: | |
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS | |
This function sets up a new asyncio event loop, initializes the PromptServer, | |
creates a PromptQueue, and initializes the custom nodes. | |
""" | |
import asyncio | |
import execution | |
from nodes import init_extra_nodes | |
import server | |
# Creating a new event loop and setting it as the default loop | |
loop = asyncio.new_event_loop() | |
asyncio.set_event_loop(loop) | |
# Creating an instance of PromptServer with the loop | |
server_instance = server.PromptServer(loop) | |
execution.PromptQueue(server_instance) | |
# Initializing custom nodes | |
# Запускаем корутину и ждём её завершения | |
loop.run_until_complete(init_extra_nodes()) | |
import_custom_nodes() | |
from nodes import NODE_CLASS_MAPPINGS | |
# --- Глобальная загрузка моделей (один раз при старте) --- | |
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]() | |
vhs_loadvideo = NODE_CLASS_MAPPINGS["VHS_LoadVideo"]() | |
reactoroptions = NODE_CLASS_MAPPINGS["ReActorOptions"]() | |
vhs_videoinfoloaded = NODE_CLASS_MAPPINGS["VHS_VideoInfoLoaded"]() | |
reactorfaceswapopt = NODE_CLASS_MAPPINGS["ReActorFaceSwapOpt"]() | |
vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]() | |
def generate_image(source_image, input_video, input_index, input_faces_order, swap_model, pingpong, loop_count, select_every_nth, use_audio): | |
with torch.inference_mode(): | |
loadimage_29 = loadimage.load_image(image=source_image) | |
vhs_loadvideo_51 = vhs_loadvideo.load_video( | |
video=input_video, | |
force_rate=0, | |
custom_width=0, | |
custom_height=0, | |
frame_load_cap=0, | |
skip_first_frames=0, | |
select_every_nth=select_every_nth, | |
format="AnimateDiff", | |
unique_id=17765013700631265033, | |
) | |
reactoroptions_107 = reactoroptions.execute( | |
input_faces_order=input_faces_order, | |
input_faces_index=str(input_index), # Преобразуем в строку | |
detect_gender_input="no", | |
source_faces_order="large-small", | |
source_faces_index="0", | |
detect_gender_source="no", | |
console_log_level=1, | |
) | |
for q in range(1): | |
vhs_videoinfoloaded_105 = vhs_videoinfoloaded.get_video_info( | |
video_info=get_value_at_index(vhs_loadvideo_51, 3) | |
) | |
reactorfaceswapopt_106 = reactorfaceswapopt.execute( | |
enabled=True, | |
swap_model=swap_model, # Используем выбранную модель | |
facedetection="YOLOv5l", | |
face_restore_model="none", | |
face_restore_visibility=1, | |
codeformer_weight=0.5, | |
input_image=get_value_at_index(vhs_loadvideo_51, 0), | |
source_image=get_value_at_index(loadimage_29, 0), | |
options=get_value_at_index(reactoroptions_107, 0), | |
) | |
# Формируем аргументы для combine_video | |
combine_kwargs = dict( | |
frame_rate=get_value_at_index(vhs_videoinfoloaded_105, 0), | |
loop_count=loop_count, | |
filename_prefix="vidswap", | |
format="video/h264-mp4", | |
pix_fmt="yuv420p", | |
crf=20, | |
save_metadata=False, | |
trim_to_audio=False, | |
pingpong=pingpong, | |
save_output=True, | |
images=get_value_at_index(reactorfaceswapopt_106, 0), | |
unique_id=17889577966051683261, | |
) | |
if use_audio: | |
combine_kwargs["audio"] = get_value_at_index(vhs_loadvideo_51, 2) | |
vhs_videocombine_28 = vhs_videocombine.combine_video(**combine_kwargs) | |
saved_path = f"output/{vhs_videocombine_28['ui']['gifs'][0]['filename']}" | |
return saved_path | |
if __name__ == "__main__": | |
with gr.Blocks() as app: | |
# Заголовок | |
gr.Markdown("# ComfyUI Reactor Video Face Swap Hyperswap") | |
gr.Markdown( | |
"ComfyUI Reactor Video Face Swap Hyperswap running directly on Gradio. - " | |
"[How to convert your any ComfyUI workflow to Gradio]" | |
"(https://huggingface.co/blog/run-comfyui-workflows-on-spaces)" | |
) | |
with gr.Row(): | |
with gr.Column(): | |
# Вложенный Row для групп | |
with gr.Row(): | |
# Первая группа | |
with gr.Group(): | |
source_image = gr.Image(label="Source Image (Face)", type="filepath") | |
swap_model = gr.Dropdown( | |
choices=["hyperswap_1a_256.onnx", "hyperswap_1b_256.onnx", "hyperswap_1c_256.onnx"], | |
value="hyperswap_1b_256.onnx", | |
label="Swap Model" | |
) | |
input_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index") | |
input_faces_order_dropdown = gr.Dropdown( | |
choices=[ | |
"left-right", | |
"right-left", | |
"top-bottom", | |
"bottom-top", | |
"large-small", | |
"small-large" | |
], | |
value="large-small", # значение по умолчанию | |
label="Target Faces Order") | |
# Вторая группа (обратите внимание — она должна быть на том же уровне, что и первая) | |
with gr.Group(): | |
input_video = gr.Video(label="Target Video (Body)") | |
select_every_nth = gr.Dropdown(choices=[1, 2], value=1, label='"1" = choose every frame, "2" - every second frame') | |
loop_count = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label='"Loop_Count" = repeat loop append to your video') | |
pingpong_checkbox = gr.Checkbox(label='"Pingpong" = reverse append to your video', value=False) | |
audio_checkbox = gr.Checkbox(label='"Audio" = enable audio', value=False) | |
# Кнопка генерации | |
generate_btn = gr.Button("Generate") | |
with gr.Column(): | |
# Вывод результата | |
output_video = gr.Video(label="Generated Video") | |
# with gr.Accordion("Notes (click to open)", open=False): | |
# gr.Markdown("Added text here") | |
text = """ | |
***Note: Hyperswap_1b_256.onnx is the best (in most cases) - but model has inner bug - sometimes they produce "FAIL" swap (working, but do not do any swapping). | |
***Target_Face_Index: Index_0 = Largest Face. To switch for another target face - switch to Index_1, Index_2, e.t.c. | |
***Note: If you forget to add "Loop_Count" or "Pingpong" options to your video - after finish you can enable this options and press "Generate" button - which leads to quickly re-save new result video (without re-generating). | |
***Note: "1" or "2" - if you have video 60fps or 48 fps - you can choose "2" to select every 2nd frame - for two time reduce total number of frames in video (got 30 fps and 24 fps video, accordingly). | |
***Note: If needed, use AdvancedLivePortrait to correct faces on video before swapping. Here is [workflow](https://openart.ai/workflows/ocelot_vibrant_0/advanced-liveportrait-for-video-as-source/hV07PExjpK3JEd6kNnkr) for ComfyUI. | |
***Note: Use Avidemux - simple but powerful freeware video editor. [Download](https://www.avidemux.org/nightly/) - choose win64 v2.8.2 for Windows 10 | |
""" | |
gr.Markdown(text) | |
# Связываем клик кнопки с функцией | |
generate_btn.click( | |
fn=generate_image, | |
inputs=[source_image, input_video, input_index, input_faces_order_dropdown, swap_model, pingpong_checkbox, loop_count, select_every_nth, audio_checkbox], | |
outputs=[output_video] | |
) | |
app.launch(share=True) | |