DegMaTsu's picture
Upload 891 files
04a7c68 verified
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
from PIL import Image
from huggingface_hub import hf_hub_download
import spaces
import subprocess, sys
# ---------------------------------------------------------------------------------
# 🛠️ Monkey-patch для gradio_client: игнорируем булевы схемы и не падаем на TypeError
# ---------------------------------------------------------------------------------
import gradio_client.utils as _gc_utils
# Сохраняем оригинальные функции
_orig_js2pt = _gc_utils._json_schema_to_python_type
_orig_get_type = _gc_utils.get_type
def _safe_json_schema_to_python_type(schema, defs=None):
"""
Если schema — bool (True/False), возвращаем 'Any',
иначе — вызываем оригинальный код.
"""
if isinstance(schema, bool):
return "Any"
return _orig_js2pt(schema, defs)
def _safe_get_type(schema):
"""
Если schema — bool, возвращаем 'Any',
иначе — вызываем оригинальную функцию get_type.
"""
if isinstance(schema, bool):
return "Any"
return _orig_get_type(schema)
# Заменяем в модуле
_gc_utils._json_schema_to_python_type = _safe_json_schema_to_python_type
_gc_utils.get_type = _safe_get_type
# ---------------------------------------------------------------------------------
# Дальше уже можно безопасно импортировать Gradio
import gradio
import gradio_client
import gradio as gr
print("gradio version:", gradio.__version__)
print("gradio_client version:", gradio_client.__version__)
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1a_256.onnx", local_dir="models/hyperswap")
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1b_256.onnx", local_dir="models/hyperswap")
hf_hub_download(repo_id="facefusion/models-3.3.0", filename="hyperswap_1c_256.onnx", local_dir="models/hyperswap")
hf_hub_download(repo_id="martintomov/comfy", filename="facedetection/yolov5l-face.pth", local_dir="models")
###hf_hub_download(repo_id="darkeril/collection", filename="detection_Resnet50_Final.pth", local_dir="models/facedetection")
hf_hub_download(repo_id="gmk123/GFPGAN", filename="parsing_parsenet.pth", local_dir="models/facedetection")
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="1k3d68.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="MonsterMMORPG/tools", filename="2d106det.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="maze/faceX", filename="det_10g.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="typhoon01/aux_models", filename="genderage.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="maze/faceX", filename="w600k_r50.onnx", local_dir="models/insightface/models/buffalo_l")
hf_hub_download(repo_id="vladmandic/insightface-faceanalysis", filename="buffalo_l.zip", local_dir="models/insightface/models/buffalo_l")
def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
"""Returns the value at the given index of a sequence or mapping.
If the object is a sequence (like list or string), returns the value at the given index.
If the object is a mapping (like a dictionary), returns the value at the index-th key.
Some return a dictionary, in these cases, we look for the "results" key
Args:
obj (Union[Sequence, Mapping]): The object to retrieve the value from.
index (int): The index of the value to retrieve.
Returns:
Any: The value at the given index.
Raises:
IndexError: If the index is out of bounds for the object and the object is not a mapping.
"""
try:
return obj[index]
except KeyError:
return obj["result"][index]
def find_path(name: str, path: str = None) -> str:
"""
Recursively looks at parent folders starting from the given path until it finds the given name.
Returns the path as a Path object if found, or None otherwise.
"""
# If no path is given, use the current working directory
if path is None:
path = os.getcwd()
# Check if the current directory contains the name
if name in os.listdir(path):
path_name = os.path.join(path, name)
print(f"{name} found: {path_name}")
return path_name
# Get the parent directory
parent_directory = os.path.dirname(path)
# If the parent directory is the same as the current directory, we've reached the root and stop the search
if parent_directory == path:
return None
# Recursively call the function with the parent directory
return find_path(name, parent_directory)
def add_comfyui_directory_to_sys_path() -> None:
"""
Add 'ComfyUI' to the sys.path
"""
comfyui_path = find_path("ComfyUI")
if comfyui_path is not None and os.path.isdir(comfyui_path):
sys.path.append(comfyui_path)
print(f"'{comfyui_path}' added to sys.path")
def add_extra_model_paths() -> None:
"""
Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
"""
try:
from main import load_extra_path_config
except ImportError:
print(
"Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
)
from utils.extra_config import load_extra_path_config
extra_model_paths = find_path("extra_model_paths.yaml")
if extra_model_paths is not None:
load_extra_path_config(extra_model_paths)
else:
print("Could not find the extra_model_paths config file.")
add_comfyui_directory_to_sys_path()
add_extra_model_paths()
def import_custom_nodes() -> None:
"""Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
This function sets up a new asyncio event loop, initializes the PromptServer,
creates a PromptQueue, and initializes the custom nodes.
"""
import asyncio
import execution
from nodes import init_extra_nodes
import server
# Creating a new event loop and setting it as the default loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
# Creating an instance of PromptServer with the loop
server_instance = server.PromptServer(loop)
execution.PromptQueue(server_instance)
# Initializing custom nodes
# Запускаем корутину и ждём её завершения
loop.run_until_complete(init_extra_nodes())
import_custom_nodes()
from nodes import NODE_CLASS_MAPPINGS
# --- Глобальная загрузка моделей (один раз при старте) ---
loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
vhs_loadvideo = NODE_CLASS_MAPPINGS["VHS_LoadVideo"]()
reactoroptions = NODE_CLASS_MAPPINGS["ReActorOptions"]()
vhs_videoinfoloaded = NODE_CLASS_MAPPINGS["VHS_VideoInfoLoaded"]()
reactorfaceswapopt = NODE_CLASS_MAPPINGS["ReActorFaceSwapOpt"]()
vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()
@spaces.GPU(duration=60)
def generate_image(source_image, input_video, input_index, input_faces_order, swap_model, pingpong, loop_count, select_every_nth, use_audio):
with torch.inference_mode():
loadimage_29 = loadimage.load_image(image=source_image)
vhs_loadvideo_51 = vhs_loadvideo.load_video(
video=input_video,
force_rate=0,
custom_width=0,
custom_height=0,
frame_load_cap=0,
skip_first_frames=0,
select_every_nth=select_every_nth,
format="AnimateDiff",
unique_id=17765013700631265033,
)
reactoroptions_107 = reactoroptions.execute(
input_faces_order=input_faces_order,
input_faces_index=str(input_index), # Преобразуем в строку
detect_gender_input="no",
source_faces_order="large-small",
source_faces_index="0",
detect_gender_source="no",
console_log_level=1,
)
for q in range(1):
vhs_videoinfoloaded_105 = vhs_videoinfoloaded.get_video_info(
video_info=get_value_at_index(vhs_loadvideo_51, 3)
)
reactorfaceswapopt_106 = reactorfaceswapopt.execute(
enabled=True,
swap_model=swap_model, # Используем выбранную модель
facedetection="YOLOv5l",
face_restore_model="none",
face_restore_visibility=1,
codeformer_weight=0.5,
input_image=get_value_at_index(vhs_loadvideo_51, 0),
source_image=get_value_at_index(loadimage_29, 0),
options=get_value_at_index(reactoroptions_107, 0),
)
# Формируем аргументы для combine_video
combine_kwargs = dict(
frame_rate=get_value_at_index(vhs_videoinfoloaded_105, 0),
loop_count=loop_count,
filename_prefix="vidswap",
format="video/h264-mp4",
pix_fmt="yuv420p",
crf=20,
save_metadata=False,
trim_to_audio=False,
pingpong=pingpong,
save_output=True,
images=get_value_at_index(reactorfaceswapopt_106, 0),
unique_id=17889577966051683261,
)
if use_audio:
combine_kwargs["audio"] = get_value_at_index(vhs_loadvideo_51, 2)
vhs_videocombine_28 = vhs_videocombine.combine_video(**combine_kwargs)
saved_path = f"output/{vhs_videocombine_28['ui']['gifs'][0]['filename']}"
return saved_path
if __name__ == "__main__":
with gr.Blocks() as app:
# Заголовок
gr.Markdown("# ComfyUI Reactor Video Face Swap Hyperswap")
gr.Markdown(
"ComfyUI Reactor Video Face Swap Hyperswap running directly on Gradio. - "
"[How to convert your any ComfyUI workflow to Gradio]"
"(https://huggingface.co/blog/run-comfyui-workflows-on-spaces)"
)
with gr.Row():
with gr.Column():
# Вложенный Row для групп
with gr.Row():
# Первая группа
with gr.Group():
source_image = gr.Image(label="Source Image (Face)", type="filepath")
swap_model = gr.Dropdown(
choices=["hyperswap_1a_256.onnx", "hyperswap_1b_256.onnx", "hyperswap_1c_256.onnx"],
value="hyperswap_1b_256.onnx",
label="Swap Model"
)
input_index = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label="Target Face Index")
input_faces_order_dropdown = gr.Dropdown(
choices=[
"left-right",
"right-left",
"top-bottom",
"bottom-top",
"large-small",
"small-large"
],
value="large-small", # значение по умолчанию
label="Target Faces Order")
# Вторая группа (обратите внимание — она должна быть на том же уровне, что и первая)
with gr.Group():
input_video = gr.Video(label="Target Video (Body)")
select_every_nth = gr.Dropdown(choices=[1, 2], value=1, label='"1" = choose every frame, "2" - every second frame')
loop_count = gr.Dropdown(choices=[0, 1, 2, 3, 4], value=0, label='"Loop_Count" = repeat loop append to your video')
pingpong_checkbox = gr.Checkbox(label='"Pingpong" = reverse append to your video', value=False)
audio_checkbox = gr.Checkbox(label='"Audio" = enable audio', value=False)
# Кнопка генерации
generate_btn = gr.Button("Generate")
with gr.Column():
# Вывод результата
output_video = gr.Video(label="Generated Video")
# with gr.Accordion("Notes (click to open)", open=False):
# gr.Markdown("Added text here")
text = """
***Note: Hyperswap_1b_256.onnx is the best (in most cases) - but model has inner bug - sometimes they produce "FAIL" swap (working, but do not do any swapping).
***Target_Face_Index: Index_0 = Largest Face. To switch for another target face - switch to Index_1, Index_2, e.t.c.
***Note: If you forget to add "Loop_Count" or "Pingpong" options to your video - after finish you can enable this options and press "Generate" button - which leads to quickly re-save new result video (without re-generating).
***Note: "1" or "2" - if you have video 60fps or 48 fps - you can choose "2" to select every 2nd frame - for two time reduce total number of frames in video (got 30 fps and 24 fps video, accordingly).
***Note: If needed, use AdvancedLivePortrait to correct faces on video before swapping. Here is [workflow](https://openart.ai/workflows/ocelot_vibrant_0/advanced-liveportrait-for-video-as-source/hV07PExjpK3JEd6kNnkr) for ComfyUI.
***Note: Use Avidemux - simple but powerful freeware video editor. [Download](https://www.avidemux.org/nightly/) - choose win64 v2.8.2 for Windows 10
"""
gr.Markdown(text)
# Связываем клик кнопки с функцией
generate_btn.click(
fn=generate_image,
inputs=[source_image, input_video, input_index, input_faces_order_dropdown, swap_model, pingpong_checkbox, loop_count, select_every_nth, audio_checkbox],
outputs=[output_video]
)
app.launch(share=True)