|
|
from inspect import cleandoc |
|
|
from typing import Optional |
|
|
|
|
|
import torch |
|
|
from typing_extensions import override |
|
|
|
|
|
from comfy_api.latest import IO, ComfyExtension |
|
|
from comfy_api_nodes.apinode_utils import ( |
|
|
resize_mask_to_image, |
|
|
validate_aspect_ratio, |
|
|
) |
|
|
from comfy_api_nodes.apis.bfl_api import ( |
|
|
BFLFluxExpandImageRequest, |
|
|
BFLFluxFillImageRequest, |
|
|
BFLFluxKontextProGenerateRequest, |
|
|
BFLFluxProGenerateRequest, |
|
|
BFLFluxProGenerateResponse, |
|
|
BFLFluxProUltraGenerateRequest, |
|
|
BFLFluxStatusResponse, |
|
|
BFLStatus, |
|
|
) |
|
|
from comfy_api_nodes.util import ( |
|
|
ApiEndpoint, |
|
|
download_url_to_image_tensor, |
|
|
poll_op, |
|
|
sync_op, |
|
|
tensor_to_base64_string, |
|
|
validate_string, |
|
|
) |
|
|
|
|
|
|
|
|
def convert_mask_to_image(mask: torch.Tensor): |
|
|
""" |
|
|
Make mask have the expected amount of dims (4) and channels (3) to be recognized as an image. |
|
|
""" |
|
|
mask = mask.unsqueeze(-1) |
|
|
mask = torch.cat([mask] * 3, dim=-1) |
|
|
return mask |
|
|
|
|
|
|
|
|
class FluxProUltraImageNode(IO.ComfyNode): |
|
|
""" |
|
|
Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution. |
|
|
""" |
|
|
|
|
|
MINIMUM_RATIO = 1 / 4 |
|
|
MAXIMUM_RATIO = 4 / 1 |
|
|
MINIMUM_RATIO_STR = "1:4" |
|
|
MAXIMUM_RATIO_STR = "4:1" |
|
|
|
|
|
@classmethod |
|
|
def define_schema(cls) -> IO.Schema: |
|
|
return IO.Schema( |
|
|
node_id="FluxProUltraImageNode", |
|
|
display_name="Flux 1.1 [pro] Ultra Image", |
|
|
category="api node/image/BFL", |
|
|
description=cleandoc(cls.__doc__ or ""), |
|
|
inputs=[ |
|
|
IO.String.Input( |
|
|
"prompt", |
|
|
multiline=True, |
|
|
default="", |
|
|
tooltip="Prompt for the image generation", |
|
|
), |
|
|
IO.Boolean.Input( |
|
|
"prompt_upsampling", |
|
|
default=False, |
|
|
tooltip="Whether to perform upsampling on the prompt. " |
|
|
"If active, automatically modifies the prompt for more creative generation, " |
|
|
"but results are nondeterministic (same seed will not produce exactly the same result).", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"seed", |
|
|
default=0, |
|
|
min=0, |
|
|
max=0xFFFFFFFFFFFFFFFF, |
|
|
control_after_generate=True, |
|
|
tooltip="The random seed used for creating the noise.", |
|
|
), |
|
|
IO.String.Input( |
|
|
"aspect_ratio", |
|
|
default="16:9", |
|
|
tooltip="Aspect ratio of image; must be between 1:4 and 4:1.", |
|
|
), |
|
|
IO.Boolean.Input( |
|
|
"raw", |
|
|
default=False, |
|
|
tooltip="When True, generate less processed, more natural-looking images.", |
|
|
), |
|
|
IO.Image.Input( |
|
|
"image_prompt", |
|
|
optional=True, |
|
|
), |
|
|
IO.Float.Input( |
|
|
"image_prompt_strength", |
|
|
default=0.1, |
|
|
min=0.0, |
|
|
max=1.0, |
|
|
step=0.01, |
|
|
tooltip="Blend between the prompt and the image prompt.", |
|
|
optional=True, |
|
|
), |
|
|
], |
|
|
outputs=[IO.Image.Output()], |
|
|
hidden=[ |
|
|
IO.Hidden.auth_token_comfy_org, |
|
|
IO.Hidden.api_key_comfy_org, |
|
|
IO.Hidden.unique_id, |
|
|
], |
|
|
is_api_node=True, |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def validate_inputs(cls, aspect_ratio: str): |
|
|
try: |
|
|
validate_aspect_ratio( |
|
|
aspect_ratio, |
|
|
minimum_ratio=cls.MINIMUM_RATIO, |
|
|
maximum_ratio=cls.MAXIMUM_RATIO, |
|
|
minimum_ratio_str=cls.MINIMUM_RATIO_STR, |
|
|
maximum_ratio_str=cls.MAXIMUM_RATIO_STR, |
|
|
) |
|
|
except Exception as e: |
|
|
return str(e) |
|
|
return True |
|
|
|
|
|
@classmethod |
|
|
async def execute( |
|
|
cls, |
|
|
prompt: str, |
|
|
aspect_ratio: str, |
|
|
prompt_upsampling: bool = False, |
|
|
raw: bool = False, |
|
|
seed: int = 0, |
|
|
image_prompt: Optional[torch.Tensor] = None, |
|
|
image_prompt_strength: float = 0.1, |
|
|
) -> IO.NodeOutput: |
|
|
if image_prompt is None: |
|
|
validate_string(prompt, strip_whitespace=False) |
|
|
initial_response = await sync_op( |
|
|
cls, |
|
|
ApiEndpoint(path="/proxy/bfl/flux-pro-1.1-ultra/generate", method="POST"), |
|
|
response_model=BFLFluxProGenerateResponse, |
|
|
data=BFLFluxProUltraGenerateRequest( |
|
|
prompt=prompt, |
|
|
prompt_upsampling=prompt_upsampling, |
|
|
seed=seed, |
|
|
aspect_ratio=validate_aspect_ratio( |
|
|
aspect_ratio, |
|
|
minimum_ratio=cls.MINIMUM_RATIO, |
|
|
maximum_ratio=cls.MAXIMUM_RATIO, |
|
|
minimum_ratio_str=cls.MINIMUM_RATIO_STR, |
|
|
maximum_ratio_str=cls.MAXIMUM_RATIO_STR, |
|
|
), |
|
|
raw=raw, |
|
|
image_prompt=(image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt)), |
|
|
image_prompt_strength=(None if image_prompt is None else round(image_prompt_strength, 2)), |
|
|
), |
|
|
) |
|
|
response = await poll_op( |
|
|
cls, |
|
|
ApiEndpoint(initial_response.polling_url), |
|
|
response_model=BFLFluxStatusResponse, |
|
|
status_extractor=lambda r: r.status, |
|
|
progress_extractor=lambda r: r.progress, |
|
|
completed_statuses=[BFLStatus.ready], |
|
|
failed_statuses=[ |
|
|
BFLStatus.request_moderated, |
|
|
BFLStatus.content_moderated, |
|
|
BFLStatus.error, |
|
|
BFLStatus.task_not_found, |
|
|
], |
|
|
queued_statuses=[], |
|
|
) |
|
|
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) |
|
|
|
|
|
|
|
|
class FluxKontextProImageNode(IO.ComfyNode): |
|
|
""" |
|
|
Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio. |
|
|
""" |
|
|
|
|
|
MINIMUM_RATIO = 1 / 4 |
|
|
MAXIMUM_RATIO = 4 / 1 |
|
|
MINIMUM_RATIO_STR = "1:4" |
|
|
MAXIMUM_RATIO_STR = "4:1" |
|
|
|
|
|
@classmethod |
|
|
def define_schema(cls) -> IO.Schema: |
|
|
return IO.Schema( |
|
|
node_id=cls.NODE_ID, |
|
|
display_name=cls.DISPLAY_NAME, |
|
|
category="api node/image/BFL", |
|
|
description=cleandoc(cls.__doc__ or ""), |
|
|
inputs=[ |
|
|
IO.String.Input( |
|
|
"prompt", |
|
|
multiline=True, |
|
|
default="", |
|
|
tooltip="Prompt for the image generation - specify what and how to edit.", |
|
|
), |
|
|
IO.String.Input( |
|
|
"aspect_ratio", |
|
|
default="16:9", |
|
|
tooltip="Aspect ratio of image; must be between 1:4 and 4:1.", |
|
|
), |
|
|
IO.Float.Input( |
|
|
"guidance", |
|
|
default=3.0, |
|
|
min=0.1, |
|
|
max=99.0, |
|
|
step=0.1, |
|
|
tooltip="Guidance strength for the image generation process", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"steps", |
|
|
default=50, |
|
|
min=1, |
|
|
max=150, |
|
|
tooltip="Number of steps for the image generation process", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"seed", |
|
|
default=1234, |
|
|
min=0, |
|
|
max=0xFFFFFFFFFFFFFFFF, |
|
|
control_after_generate=True, |
|
|
tooltip="The random seed used for creating the noise.", |
|
|
), |
|
|
IO.Boolean.Input( |
|
|
"prompt_upsampling", |
|
|
default=False, |
|
|
tooltip="Whether to perform upsampling on the prompt. If active, automatically modifies the prompt for more creative generation, but results are nondeterministic (same seed will not produce exactly the same result).", |
|
|
), |
|
|
IO.Image.Input( |
|
|
"input_image", |
|
|
optional=True, |
|
|
), |
|
|
], |
|
|
outputs=[IO.Image.Output()], |
|
|
hidden=[ |
|
|
IO.Hidden.auth_token_comfy_org, |
|
|
IO.Hidden.api_key_comfy_org, |
|
|
IO.Hidden.unique_id, |
|
|
], |
|
|
is_api_node=True, |
|
|
) |
|
|
|
|
|
BFL_PATH = "/proxy/bfl/flux-kontext-pro/generate" |
|
|
NODE_ID = "FluxKontextProImageNode" |
|
|
DISPLAY_NAME = "Flux.1 Kontext [pro] Image" |
|
|
|
|
|
@classmethod |
|
|
async def execute( |
|
|
cls, |
|
|
prompt: str, |
|
|
aspect_ratio: str, |
|
|
guidance: float, |
|
|
steps: int, |
|
|
input_image: Optional[torch.Tensor] = None, |
|
|
seed=0, |
|
|
prompt_upsampling=False, |
|
|
) -> IO.NodeOutput: |
|
|
aspect_ratio = validate_aspect_ratio( |
|
|
aspect_ratio, |
|
|
minimum_ratio=cls.MINIMUM_RATIO, |
|
|
maximum_ratio=cls.MAXIMUM_RATIO, |
|
|
minimum_ratio_str=cls.MINIMUM_RATIO_STR, |
|
|
maximum_ratio_str=cls.MAXIMUM_RATIO_STR, |
|
|
) |
|
|
if input_image is None: |
|
|
validate_string(prompt, strip_whitespace=False) |
|
|
initial_response = await sync_op( |
|
|
cls, |
|
|
ApiEndpoint(path=cls.BFL_PATH, method="POST"), |
|
|
response_model=BFLFluxProGenerateResponse, |
|
|
data=BFLFluxKontextProGenerateRequest( |
|
|
prompt=prompt, |
|
|
prompt_upsampling=prompt_upsampling, |
|
|
guidance=round(guidance, 1), |
|
|
steps=steps, |
|
|
seed=seed, |
|
|
aspect_ratio=aspect_ratio, |
|
|
input_image=(input_image if input_image is None else tensor_to_base64_string(input_image)), |
|
|
), |
|
|
) |
|
|
response = await poll_op( |
|
|
cls, |
|
|
ApiEndpoint(initial_response.polling_url), |
|
|
response_model=BFLFluxStatusResponse, |
|
|
status_extractor=lambda r: r.status, |
|
|
progress_extractor=lambda r: r.progress, |
|
|
completed_statuses=[BFLStatus.ready], |
|
|
failed_statuses=[ |
|
|
BFLStatus.request_moderated, |
|
|
BFLStatus.content_moderated, |
|
|
BFLStatus.error, |
|
|
BFLStatus.task_not_found, |
|
|
], |
|
|
queued_statuses=[], |
|
|
) |
|
|
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) |
|
|
|
|
|
|
|
|
class FluxKontextMaxImageNode(FluxKontextProImageNode): |
|
|
""" |
|
|
Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio. |
|
|
""" |
|
|
|
|
|
DESCRIPTION = cleandoc(__doc__ or "") |
|
|
BFL_PATH = "/proxy/bfl/flux-kontext-max/generate" |
|
|
NODE_ID = "FluxKontextMaxImageNode" |
|
|
DISPLAY_NAME = "Flux.1 Kontext [max] Image" |
|
|
|
|
|
|
|
|
class FluxProImageNode(IO.ComfyNode): |
|
|
""" |
|
|
Generates images synchronously based on prompt and resolution. |
|
|
""" |
|
|
|
|
|
@classmethod |
|
|
def define_schema(cls) -> IO.Schema: |
|
|
return IO.Schema( |
|
|
node_id="FluxProImageNode", |
|
|
display_name="Flux 1.1 [pro] Image", |
|
|
category="api node/image/BFL", |
|
|
description=cleandoc(cls.__doc__ or ""), |
|
|
inputs=[ |
|
|
IO.String.Input( |
|
|
"prompt", |
|
|
multiline=True, |
|
|
default="", |
|
|
tooltip="Prompt for the image generation", |
|
|
), |
|
|
IO.Boolean.Input( |
|
|
"prompt_upsampling", |
|
|
default=False, |
|
|
tooltip="Whether to perform upsampling on the prompt. " |
|
|
"If active, automatically modifies the prompt for more creative generation, " |
|
|
"but results are nondeterministic (same seed will not produce exactly the same result).", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"width", |
|
|
default=1024, |
|
|
min=256, |
|
|
max=1440, |
|
|
step=32, |
|
|
), |
|
|
IO.Int.Input( |
|
|
"height", |
|
|
default=768, |
|
|
min=256, |
|
|
max=1440, |
|
|
step=32, |
|
|
), |
|
|
IO.Int.Input( |
|
|
"seed", |
|
|
default=0, |
|
|
min=0, |
|
|
max=0xFFFFFFFFFFFFFFFF, |
|
|
control_after_generate=True, |
|
|
tooltip="The random seed used for creating the noise.", |
|
|
), |
|
|
IO.Image.Input( |
|
|
"image_prompt", |
|
|
optional=True, |
|
|
), |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
], |
|
|
outputs=[IO.Image.Output()], |
|
|
hidden=[ |
|
|
IO.Hidden.auth_token_comfy_org, |
|
|
IO.Hidden.api_key_comfy_org, |
|
|
IO.Hidden.unique_id, |
|
|
], |
|
|
is_api_node=True, |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
async def execute( |
|
|
cls, |
|
|
prompt: str, |
|
|
prompt_upsampling, |
|
|
width: int, |
|
|
height: int, |
|
|
seed=0, |
|
|
image_prompt=None, |
|
|
|
|
|
) -> IO.NodeOutput: |
|
|
image_prompt = image_prompt if image_prompt is None else tensor_to_base64_string(image_prompt) |
|
|
initial_response = await sync_op( |
|
|
cls, |
|
|
ApiEndpoint( |
|
|
path="/proxy/bfl/flux-pro-1.1/generate", |
|
|
method="POST", |
|
|
), |
|
|
response_model=BFLFluxProGenerateResponse, |
|
|
data=BFLFluxProGenerateRequest( |
|
|
prompt=prompt, |
|
|
prompt_upsampling=prompt_upsampling, |
|
|
width=width, |
|
|
height=height, |
|
|
seed=seed, |
|
|
image_prompt=image_prompt, |
|
|
), |
|
|
) |
|
|
response = await poll_op( |
|
|
cls, |
|
|
ApiEndpoint(initial_response.polling_url), |
|
|
response_model=BFLFluxStatusResponse, |
|
|
status_extractor=lambda r: r.status, |
|
|
progress_extractor=lambda r: r.progress, |
|
|
completed_statuses=[BFLStatus.ready], |
|
|
failed_statuses=[ |
|
|
BFLStatus.request_moderated, |
|
|
BFLStatus.content_moderated, |
|
|
BFLStatus.error, |
|
|
BFLStatus.task_not_found, |
|
|
], |
|
|
queued_statuses=[], |
|
|
) |
|
|
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) |
|
|
|
|
|
|
|
|
class FluxProExpandNode(IO.ComfyNode): |
|
|
""" |
|
|
Outpaints image based on prompt. |
|
|
""" |
|
|
|
|
|
@classmethod |
|
|
def define_schema(cls) -> IO.Schema: |
|
|
return IO.Schema( |
|
|
node_id="FluxProExpandNode", |
|
|
display_name="Flux.1 Expand Image", |
|
|
category="api node/image/BFL", |
|
|
description=cleandoc(cls.__doc__ or ""), |
|
|
inputs=[ |
|
|
IO.Image.Input("image"), |
|
|
IO.String.Input( |
|
|
"prompt", |
|
|
multiline=True, |
|
|
default="", |
|
|
tooltip="Prompt for the image generation", |
|
|
), |
|
|
IO.Boolean.Input( |
|
|
"prompt_upsampling", |
|
|
default=False, |
|
|
tooltip="Whether to perform upsampling on the prompt. " |
|
|
"If active, automatically modifies the prompt for more creative generation, " |
|
|
"but results are nondeterministic (same seed will not produce exactly the same result).", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"top", |
|
|
default=0, |
|
|
min=0, |
|
|
max=2048, |
|
|
tooltip="Number of pixels to expand at the top of the image", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"bottom", |
|
|
default=0, |
|
|
min=0, |
|
|
max=2048, |
|
|
tooltip="Number of pixels to expand at the bottom of the image", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"left", |
|
|
default=0, |
|
|
min=0, |
|
|
max=2048, |
|
|
tooltip="Number of pixels to expand at the left of the image", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"right", |
|
|
default=0, |
|
|
min=0, |
|
|
max=2048, |
|
|
tooltip="Number of pixels to expand at the right of the image", |
|
|
), |
|
|
IO.Float.Input( |
|
|
"guidance", |
|
|
default=60, |
|
|
min=1.5, |
|
|
max=100, |
|
|
tooltip="Guidance strength for the image generation process", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"steps", |
|
|
default=50, |
|
|
min=15, |
|
|
max=50, |
|
|
tooltip="Number of steps for the image generation process", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"seed", |
|
|
default=0, |
|
|
min=0, |
|
|
max=0xFFFFFFFFFFFFFFFF, |
|
|
control_after_generate=True, |
|
|
tooltip="The random seed used for creating the noise.", |
|
|
), |
|
|
], |
|
|
outputs=[IO.Image.Output()], |
|
|
hidden=[ |
|
|
IO.Hidden.auth_token_comfy_org, |
|
|
IO.Hidden.api_key_comfy_org, |
|
|
IO.Hidden.unique_id, |
|
|
], |
|
|
is_api_node=True, |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
async def execute( |
|
|
cls, |
|
|
image: torch.Tensor, |
|
|
prompt: str, |
|
|
prompt_upsampling: bool, |
|
|
top: int, |
|
|
bottom: int, |
|
|
left: int, |
|
|
right: int, |
|
|
steps: int, |
|
|
guidance: float, |
|
|
seed=0, |
|
|
) -> IO.NodeOutput: |
|
|
initial_response = await sync_op( |
|
|
cls, |
|
|
ApiEndpoint(path="/proxy/bfl/flux-pro-1.0-expand/generate", method="POST"), |
|
|
response_model=BFLFluxProGenerateResponse, |
|
|
data=BFLFluxExpandImageRequest( |
|
|
prompt=prompt, |
|
|
prompt_upsampling=prompt_upsampling, |
|
|
top=top, |
|
|
bottom=bottom, |
|
|
left=left, |
|
|
right=right, |
|
|
steps=steps, |
|
|
guidance=guidance, |
|
|
seed=seed, |
|
|
image=tensor_to_base64_string(image), |
|
|
), |
|
|
) |
|
|
response = await poll_op( |
|
|
cls, |
|
|
ApiEndpoint(initial_response.polling_url), |
|
|
response_model=BFLFluxStatusResponse, |
|
|
status_extractor=lambda r: r.status, |
|
|
progress_extractor=lambda r: r.progress, |
|
|
completed_statuses=[BFLStatus.ready], |
|
|
failed_statuses=[ |
|
|
BFLStatus.request_moderated, |
|
|
BFLStatus.content_moderated, |
|
|
BFLStatus.error, |
|
|
BFLStatus.task_not_found, |
|
|
], |
|
|
queued_statuses=[], |
|
|
) |
|
|
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) |
|
|
|
|
|
|
|
|
class FluxProFillNode(IO.ComfyNode): |
|
|
""" |
|
|
Inpaints image based on mask and prompt. |
|
|
""" |
|
|
|
|
|
@classmethod |
|
|
def define_schema(cls) -> IO.Schema: |
|
|
return IO.Schema( |
|
|
node_id="FluxProFillNode", |
|
|
display_name="Flux.1 Fill Image", |
|
|
category="api node/image/BFL", |
|
|
description=cleandoc(cls.__doc__ or ""), |
|
|
inputs=[ |
|
|
IO.Image.Input("image"), |
|
|
IO.Mask.Input("mask"), |
|
|
IO.String.Input( |
|
|
"prompt", |
|
|
multiline=True, |
|
|
default="", |
|
|
tooltip="Prompt for the image generation", |
|
|
), |
|
|
IO.Boolean.Input( |
|
|
"prompt_upsampling", |
|
|
default=False, |
|
|
tooltip="Whether to perform upsampling on the prompt. " |
|
|
"If active, automatically modifies the prompt for more creative generation, " |
|
|
"but results are nondeterministic (same seed will not produce exactly the same result).", |
|
|
), |
|
|
IO.Float.Input( |
|
|
"guidance", |
|
|
default=60, |
|
|
min=1.5, |
|
|
max=100, |
|
|
tooltip="Guidance strength for the image generation process", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"steps", |
|
|
default=50, |
|
|
min=15, |
|
|
max=50, |
|
|
tooltip="Number of steps for the image generation process", |
|
|
), |
|
|
IO.Int.Input( |
|
|
"seed", |
|
|
default=0, |
|
|
min=0, |
|
|
max=0xFFFFFFFFFFFFFFFF, |
|
|
control_after_generate=True, |
|
|
tooltip="The random seed used for creating the noise.", |
|
|
), |
|
|
], |
|
|
outputs=[IO.Image.Output()], |
|
|
hidden=[ |
|
|
IO.Hidden.auth_token_comfy_org, |
|
|
IO.Hidden.api_key_comfy_org, |
|
|
IO.Hidden.unique_id, |
|
|
], |
|
|
is_api_node=True, |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
async def execute( |
|
|
cls, |
|
|
image: torch.Tensor, |
|
|
mask: torch.Tensor, |
|
|
prompt: str, |
|
|
prompt_upsampling: bool, |
|
|
steps: int, |
|
|
guidance: float, |
|
|
seed=0, |
|
|
) -> IO.NodeOutput: |
|
|
|
|
|
mask = resize_mask_to_image(mask, image) |
|
|
mask = tensor_to_base64_string(convert_mask_to_image(mask)) |
|
|
initial_response = await sync_op( |
|
|
cls, |
|
|
ApiEndpoint(path="/proxy/bfl/flux-pro-1.0-fill/generate", method="POST"), |
|
|
response_model=BFLFluxProGenerateResponse, |
|
|
data=BFLFluxFillImageRequest( |
|
|
prompt=prompt, |
|
|
prompt_upsampling=prompt_upsampling, |
|
|
steps=steps, |
|
|
guidance=guidance, |
|
|
seed=seed, |
|
|
image=tensor_to_base64_string(image[:, :, :, :3]), |
|
|
mask=mask, |
|
|
), |
|
|
) |
|
|
response = await poll_op( |
|
|
cls, |
|
|
ApiEndpoint(initial_response.polling_url), |
|
|
response_model=BFLFluxStatusResponse, |
|
|
status_extractor=lambda r: r.status, |
|
|
progress_extractor=lambda r: r.progress, |
|
|
completed_statuses=[BFLStatus.ready], |
|
|
failed_statuses=[ |
|
|
BFLStatus.request_moderated, |
|
|
BFLStatus.content_moderated, |
|
|
BFLStatus.error, |
|
|
BFLStatus.task_not_found, |
|
|
], |
|
|
queued_statuses=[], |
|
|
) |
|
|
return IO.NodeOutput(await download_url_to_image_tensor(response.result["sample"])) |
|
|
|
|
|
|
|
|
class BFLExtension(ComfyExtension): |
|
|
@override |
|
|
async def get_node_list(self) -> list[type[IO.ComfyNode]]: |
|
|
return [ |
|
|
FluxProUltraImageNode, |
|
|
|
|
|
FluxKontextProImageNode, |
|
|
FluxKontextMaxImageNode, |
|
|
FluxProExpandNode, |
|
|
FluxProFillNode, |
|
|
] |
|
|
|
|
|
|
|
|
async def comfy_entrypoint() -> BFLExtension: |
|
|
return BFLExtension() |
|
|
|