|
|
from typing_extensions import override |
|
|
import nodes |
|
|
import torch |
|
|
import comfy.model_management |
|
|
import comfy.utils |
|
|
import comfy.latent_formats |
|
|
|
|
|
from comfy_api.latest import ComfyExtension, io |
|
|
|
|
|
|
|
|
class EmptyCosmosLatentVideo(io.ComfyNode): |
|
|
@classmethod |
|
|
def define_schema(cls) -> io.Schema: |
|
|
return io.Schema( |
|
|
node_id="EmptyCosmosLatentVideo", |
|
|
category="latent/video", |
|
|
inputs=[ |
|
|
io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16), |
|
|
io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16), |
|
|
io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=8), |
|
|
io.Int.Input("batch_size", default=1, min=1, max=4096), |
|
|
], |
|
|
outputs=[io.Latent.Output()], |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def execute(cls, width, height, length, batch_size=1) -> io.NodeOutput: |
|
|
latent = torch.zeros([batch_size, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
|
return io.NodeOutput({"samples": latent}) |
|
|
|
|
|
|
|
|
def vae_encode_with_padding(vae, image, width, height, length, padding=0): |
|
|
pixels = comfy.utils.common_upscale(image[..., :3].movedim(-1, 1), width, height, "bilinear", "center").movedim(1, -1) |
|
|
pixel_len = min(pixels.shape[0], length) |
|
|
padded_length = min(length, (((pixel_len - 1) // 8) + 1 + padding) * 8 - 7) |
|
|
padded_pixels = torch.ones((padded_length, height, width, 3)) * 0.5 |
|
|
padded_pixels[:pixel_len] = pixels[:pixel_len] |
|
|
latent_len = ((pixel_len - 1) // 8) + 1 |
|
|
latent_temp = vae.encode(padded_pixels) |
|
|
return latent_temp[:, :, :latent_len] |
|
|
|
|
|
|
|
|
class CosmosImageToVideoLatent(io.ComfyNode): |
|
|
@classmethod |
|
|
def define_schema(cls) -> io.Schema: |
|
|
return io.Schema( |
|
|
node_id="CosmosImageToVideoLatent", |
|
|
category="conditioning/inpaint", |
|
|
inputs=[ |
|
|
io.Vae.Input("vae"), |
|
|
io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16), |
|
|
io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16), |
|
|
io.Int.Input("length", default=121, min=1, max=nodes.MAX_RESOLUTION, step=8), |
|
|
io.Int.Input("batch_size", default=1, min=1, max=4096), |
|
|
io.Image.Input("start_image", optional=True), |
|
|
io.Image.Input("end_image", optional=True), |
|
|
], |
|
|
outputs=[io.Latent.Output()], |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def execute(cls, vae, width, height, length, batch_size, start_image=None, end_image=None) -> io.NodeOutput: |
|
|
latent = torch.zeros([1, 16, ((length - 1) // 8) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
|
if start_image is None and end_image is None: |
|
|
out_latent = {} |
|
|
out_latent["samples"] = latent |
|
|
return io.NodeOutput(out_latent) |
|
|
|
|
|
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 8) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device()) |
|
|
|
|
|
if start_image is not None: |
|
|
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) |
|
|
latent[:, :, :latent_temp.shape[-3]] = latent_temp |
|
|
mask[:, :, :latent_temp.shape[-3]] *= 0.0 |
|
|
|
|
|
if end_image is not None: |
|
|
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) |
|
|
latent[:, :, -latent_temp.shape[-3]:] = latent_temp |
|
|
mask[:, :, -latent_temp.shape[-3]:] *= 0.0 |
|
|
|
|
|
out_latent = {} |
|
|
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) |
|
|
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) |
|
|
return io.NodeOutput(out_latent) |
|
|
|
|
|
class CosmosPredict2ImageToVideoLatent(io.ComfyNode): |
|
|
@classmethod |
|
|
def define_schema(cls) -> io.Schema: |
|
|
return io.Schema( |
|
|
node_id="CosmosPredict2ImageToVideoLatent", |
|
|
category="conditioning/inpaint", |
|
|
inputs=[ |
|
|
io.Vae.Input("vae"), |
|
|
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16), |
|
|
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16), |
|
|
io.Int.Input("length", default=93, min=1, max=nodes.MAX_RESOLUTION, step=4), |
|
|
io.Int.Input("batch_size", default=1, min=1, max=4096), |
|
|
io.Image.Input("start_image", optional=True), |
|
|
io.Image.Input("end_image", optional=True), |
|
|
], |
|
|
outputs=[io.Latent.Output()], |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def execute(cls, vae, width, height, length, batch_size, start_image=None, end_image=None) -> io.NodeOutput: |
|
|
latent = torch.zeros([1, 16, ((length - 1) // 4) + 1, height // 8, width // 8], device=comfy.model_management.intermediate_device()) |
|
|
if start_image is None and end_image is None: |
|
|
out_latent = {} |
|
|
out_latent["samples"] = latent |
|
|
return io.NodeOutput(out_latent) |
|
|
|
|
|
mask = torch.ones([latent.shape[0], 1, ((length - 1) // 4) + 1, latent.shape[-2], latent.shape[-1]], device=comfy.model_management.intermediate_device()) |
|
|
|
|
|
if start_image is not None: |
|
|
latent_temp = vae_encode_with_padding(vae, start_image, width, height, length, padding=1) |
|
|
latent[:, :, :latent_temp.shape[-3]] = latent_temp |
|
|
mask[:, :, :latent_temp.shape[-3]] *= 0.0 |
|
|
|
|
|
if end_image is not None: |
|
|
latent_temp = vae_encode_with_padding(vae, end_image, width, height, length, padding=0) |
|
|
latent[:, :, -latent_temp.shape[-3]:] = latent_temp |
|
|
mask[:, :, -latent_temp.shape[-3]:] *= 0.0 |
|
|
|
|
|
out_latent = {} |
|
|
latent_format = comfy.latent_formats.Wan21() |
|
|
latent = latent_format.process_out(latent) * mask + latent * (1.0 - mask) |
|
|
out_latent["samples"] = latent.repeat((batch_size, ) + (1,) * (latent.ndim - 1)) |
|
|
out_latent["noise_mask"] = mask.repeat((batch_size, ) + (1,) * (mask.ndim - 1)) |
|
|
return io.NodeOutput(out_latent) |
|
|
|
|
|
|
|
|
class CosmosExtension(ComfyExtension): |
|
|
@override |
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]: |
|
|
return [ |
|
|
EmptyCosmosLatentVideo, |
|
|
CosmosImageToVideoLatent, |
|
|
CosmosPredict2ImageToVideoLatent, |
|
|
] |
|
|
|
|
|
|
|
|
async def comfy_entrypoint() -> CosmosExtension: |
|
|
return CosmosExtension() |
|
|
|