|
|
from typing_extensions import override |
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from comfy_api.latest import ComfyExtension, io |
|
|
|
|
|
|
|
|
class Mahiro(io.ComfyNode): |
|
|
@classmethod |
|
|
def define_schema(cls): |
|
|
return io.Schema( |
|
|
node_id="Mahiro", |
|
|
display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)", |
|
|
category="_for_testing", |
|
|
description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.", |
|
|
inputs=[ |
|
|
io.Model.Input("model"), |
|
|
], |
|
|
outputs=[ |
|
|
io.Model.Output(display_name="patched_model"), |
|
|
], |
|
|
is_experimental=True, |
|
|
) |
|
|
|
|
|
@classmethod |
|
|
def execute(cls, model) -> io.NodeOutput: |
|
|
m = model.clone() |
|
|
def mahiro_normd(args): |
|
|
scale: float = args['cond_scale'] |
|
|
cond_p: torch.Tensor = args['cond_denoised'] |
|
|
uncond_p: torch.Tensor = args['uncond_denoised'] |
|
|
|
|
|
leap = cond_p * scale |
|
|
|
|
|
u_leap = uncond_p * scale |
|
|
cfg = args["denoised"] |
|
|
merge = (leap + cfg) / 2 |
|
|
normu = torch.sqrt(u_leap.abs()) * u_leap.sign() |
|
|
normm = torch.sqrt(merge.abs()) * merge.sign() |
|
|
sim = F.cosine_similarity(normu, normm).mean() |
|
|
simsc = 2 * (sim+1) |
|
|
wm = (simsc*cfg + (4-simsc)*leap) / 4 |
|
|
return wm |
|
|
m.set_model_sampler_post_cfg_function(mahiro_normd) |
|
|
return io.NodeOutput(m) |
|
|
|
|
|
|
|
|
class MahiroExtension(ComfyExtension): |
|
|
@override |
|
|
async def get_node_list(self) -> list[type[io.ComfyNode]]: |
|
|
return [ |
|
|
Mahiro, |
|
|
] |
|
|
|
|
|
|
|
|
async def comfy_entrypoint() -> MahiroExtension: |
|
|
return MahiroExtension() |
|
|
|