DegMaTsu's picture
Initial commit ComfyUI-Reactor-Video-Face-Swap-Hyperswap
359fa44
from typing_extensions import override
import torch
import torch.nn.functional as F
from comfy_api.latest import ComfyExtension, io
class Mahiro(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Mahiro",
display_name="Mahiro is so cute that she deserves a better guidance function!! (。・ω・。)",
category="_for_testing",
description="Modify the guidance to scale more on the 'direction' of the positive prompt rather than the difference between the negative prompt.",
inputs=[
io.Model.Input("model"),
],
outputs=[
io.Model.Output(display_name="patched_model"),
],
is_experimental=True,
)
@classmethod
def execute(cls, model) -> io.NodeOutput:
m = model.clone()
def mahiro_normd(args):
scale: float = args['cond_scale']
cond_p: torch.Tensor = args['cond_denoised']
uncond_p: torch.Tensor = args['uncond_denoised']
#naive leap
leap = cond_p * scale
#sim with uncond leap
u_leap = uncond_p * scale
cfg = args["denoised"]
merge = (leap + cfg) / 2
normu = torch.sqrt(u_leap.abs()) * u_leap.sign()
normm = torch.sqrt(merge.abs()) * merge.sign()
sim = F.cosine_similarity(normu, normm).mean()
simsc = 2 * (sim+1)
wm = (simsc*cfg + (4-simsc)*leap) / 4
return wm
m.set_model_sampler_post_cfg_function(mahiro_normd)
return io.NodeOutput(m)
class MahiroExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [
Mahiro,
]
async def comfy_entrypoint() -> MahiroExtension:
return MahiroExtension()