Spaces:
Sleeping
Sleeping
| #import gradio as gr | |
| import tempfile | |
| from pydub import AudioSegment | |
| from transformers import pipeline | |
| from pyannote.audio import Pipeline | |
| # Load models dynamically | |
| def load_models(model_size): | |
| if model_size == "transcriber": | |
| model_name = "clinifyemr/yoruba-model-finetuned" | |
| transcriber = pipeline("automatic-speech-recognition", model=model_name) | |
| return transcriber | |
| else: | |
| raise ValueError("Model size not supported in this application.") | |
| # Process the audio file | |
| def process_audio(file, num_speakers, model_size): | |
| audio_file = AudioSegment.from_file(file.name) | |
| transcriber = load_models(model_size) | |
| # Temporary file setup | |
| temp_path = tempfile.mktemp(suffix=".wav") | |
| audio_file.export(temp_path, format="wav") | |
| # Load diarization pipeline | |
| diarization_pipeline = Pipeline.from_pretrained("pyannote/speaker-diarization-3.1", use_auth_token="HF_TOKEN") | |
| diarization = diarization_pipeline(temp_path, min_speakers=num_speakers, max_speakers=5) | |
| # Transcribe each segment | |
| def transcribe_segment(start, end): | |
| segment_audio = audio_file[start * 1000:end * 1000] # pydub works in milliseconds | |
| segment_path = tempfile.mktemp(suffix=".wav") | |
| segment_audio.export(segment_path, format="wav") | |
| transcription = transcriber(segment_path) | |
| os.remove(segment_path) | |
| return transcription['text'] | |
| transcripts = [] | |
| for segment, _, speaker in diarization.itertracks(yield_label=True): | |
| transcription_text = transcribe_segment(segment.start, segment.end) | |
| transcripts.append(f"Speaker {speaker}: {transcription_text}") | |
| os.remove(temp_path) # Clean up the temporary file | |
| return "\n".join(transcripts) | |
| # Gradio interface setup | |
| iface = gr.Interface( | |
| fn=process_audio, | |
| inputs=[ | |
| #gr.components.Audio(label="Upload your audio file", type="file"), | |
| gr.components.Audio(label="Upload your audio file"), | |
| gr.components.Dropdown(choices=[1,2,3,4], label="Number of Speakers"), | |
| gr.components.Dropdown(choices=['transcriber'], label="Model Selection") # Assuming only 'transcriber' is relevant here | |
| ], | |
| outputs=gr.Textbox(label="Transcription"), | |
| title="Audio Transcription and Speaker Diarization", | |
| description="Upload your audio file to transcribe and analyze speaker diarization." | |
| ) | |
| if __name__ == "__main__": | |
| iface.launch() | |