File size: 9,557 Bytes
7547e8e
 
16622d0
7547e8e
 
 
 
 
16622d0
7547e8e
 
 
 
16622d0
7547e8e
 
16622d0
 
7547e8e
16622d0
7547e8e
 
 
 
 
 
 
06d9f7d
7547e8e
16622d0
7547e8e
 
 
 
 
 
 
 
 
16622d0
 
 
 
7547e8e
 
 
 
 
 
16622d0
 
 
 
 
7547e8e
16622d0
7547e8e
 
 
 
 
 
 
16622d0
7547e8e
 
 
 
 
16622d0
7547e8e
 
 
16622d0
7547e8e
 
 
16622d0
7547e8e
 
 
16622d0
7547e8e
 
 
 
 
16622d0
7547e8e
 
 
 
16622d0
7547e8e
 
 
 
16622d0
7547e8e
16622d0
7547e8e
 
 
 
 
16622d0
7547e8e
16622d0
 
 
 
 
 
 
7547e8e
 
 
 
 
 
 
 
 
 
 
 
 
16622d0
7547e8e
 
16622d0
7547e8e
 
16622d0
7547e8e
 
16622d0
7547e8e
 
 
 
 
16622d0
7547e8e
 
16622d0
7547e8e
 
 
16622d0
7547e8e
 
16622d0
7547e8e
 
 
 
 
 
 
 
 
16622d0
7547e8e
 
 
 
 
 
 
16622d0
7547e8e
16622d0
7547e8e
 
 
 
 
 
16622d0
7547e8e
16622d0
7547e8e
 
 
 
16622d0
7547e8e
 
16622d0
 
 
7547e8e
 
16622d0
7547e8e
16622d0
7547e8e
16622d0
7547e8e
16622d0
7547e8e
16622d0
 
7547e8e
 
16622d0
 
7547e8e
16622d0
 
7547e8e
16622d0
7547e8e
16622d0
7547e8e
 
16622d0
 
7547e8e
 
16622d0
 
7547e8e
 
16622d0
7547e8e
 
 
 
16622d0
7547e8e
 
16622d0
7547e8e
16622d0
 
7547e8e
06d9f7d
16622d0
7547e8e
 
16622d0
7547e8e
16622d0
 
 
 
 
 
 
 
 
 
 
 
 
 
7547e8e
16622d0
7547e8e
 
16622d0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#!/usr/bin/env python3
"""
Validation script to compare two CSV files
Compares the following columns: ๅ‡บๅŠ›_็ง‘็›ฎ, ๅ‡บๅŠ›_ไธญ็ง‘็›ฎ, ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ็งฐ, ๅ‡บๅŠ›_้ …็›ฎๅ, ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ˜ไฝ
"""

import pandas as pd
import numpy as np
from typing import List, Dict, Tuple, Optional, Any
import os
from datetime import datetime


class FileComparator:
    def __init__(self, original_file_path: str):
        """
        Initialize comparator with original output file

        Args:
            original_file_path: Path to original CSV file
        """
        self.original_file_path = original_file_path
        self.comparison_columns = [
            'ๅ‡บๅŠ›_็ง‘็›ฎ', 
            'ๅ‡บๅŠ›_ไธญ็ง‘็›ฎ', 
            'ๅ‡บๅŠ›_ๆจ™ๆบ–ๅ็งฐ', 
            'ๅ‡บๅŠ›_้ …็›ฎๅ', 
            'ๅ‡บๅŠ›_้›†่จˆ็”จๅ˜ไฝ'
        ]

    def load_original_data(self) -> pd.DataFrame:
        """Load original output data"""
        try:
            df_original = pd.read_csv(self.original_file_path)
            print(f"โœ“ Loaded original data: {len(df_original)} rows")
            return df_original
        except Exception as e:
            print(f"โœ— Error loading original data: {e}")
            raise

    def compare_dataframes(
        self, df_original: pd.DataFrame, df_optimized: pd.DataFrame
    ) -> Dict[str, Any]:
        """
        Compare original vs optimized dataframes
        
        Returns:
            Dict with comparison results
        """
        results: Dict[str, Any] = {
            "total_rows": len(df_original),
            "columns_compared": self.comparison_columns,
            "differences": {},
            "summary": {},
        }

        # Check if dataframes have same length
        if len(df_original) != len(df_optimized):
            results['length_mismatch'] = {
                'original': len(df_original),
                'optimized': len(df_optimized)
            }
            print(f"โš  Warning: Different number of rows - Original: {len(df_original)}, Optimized: {len(df_optimized)}")

        # Compare each column
        for col in self.comparison_columns:
            if col not in df_original.columns:
                results['differences'][col] = f"Column not found in original data"
                continue

            if col not in df_optimized.columns:
                results['differences'][col] = f"Column not found in optimized data"
                continue

            # Fill NaN values with empty string for comparison
            original_values = df_original[col].fillna('')
            optimized_values = df_optimized[col].fillna('')

            # Compare values
            differences = original_values != optimized_values
            diff_count = differences.sum()

            results['differences'][col] = {
                'total_differences': int(diff_count),
                'accuracy_percentage': round((1 - diff_count / len(df_original)) * 100, 2),
                'different_indices': differences[differences].index.tolist()[:10]  # Show first 10 different indices
            }

            if diff_count > 0:
                print(f"โš  {col}: {diff_count} differences ({results['differences'][col]['accuracy_percentage']}% accuracy)")
            else:
                print(f"โœ“ {col}: Perfect match (100% accuracy)")

        # Overall summary
        total_differences = sum([results['differences'][col]['total_differences'] 
                               for col in self.comparison_columns 
                               if isinstance(results['differences'][col], dict)])

        overall_accuracy = round((1 - total_differences / (len(df_original) * len(self.comparison_columns))) * 100, 2)

        results['summary'] = {
            'total_differences': total_differences,
            'overall_accuracy': overall_accuracy,
            'perfect_match': total_differences == 0
        }

        return results

    def generate_difference_report(
        self,
        df_original: pd.DataFrame,
        df_optimized: pd.DataFrame,
        output_file: Optional[str] = None,
    ) -> str:
        """
        Generate detailed difference report
        
        Args:
            df_original: Original dataframe
            df_optimized: Optimized dataframe
            output_file: Optional output file path
            
        Returns:
            Report string
        """
        report_lines = []
        report_lines.append("=" * 80)
        report_lines.append(f"FILE COMPARISON REPORT")
        report_lines.append(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M:%S')}")
        report_lines.append("=" * 80)

        # Basic info
        report_lines.append(f"Original data rows: {len(df_original)}")
        report_lines.append(f"Compared data rows: {len(df_optimized)}")
        report_lines.append(f"Columns compared: {', '.join(self.comparison_columns)}")
        report_lines.append("")

        # Compare each column
        for col in self.comparison_columns:
            if col not in df_original.columns or col not in df_optimized.columns:
                report_lines.append(f"โŒ {col}: Column missing")
                continue

            original_values = df_original[col].fillna('')
            optimized_values = df_optimized[col].fillna('')

            differences = original_values != optimized_values
            diff_count = differences.sum()
            accuracy = round((1 - diff_count / len(df_original)) * 100, 2)

            status = "โœ…" if diff_count == 0 else "โš ๏ธ"
            report_lines.append(f"{status} {col}: {diff_count} differences ({accuracy}% accuracy)")

            if diff_count > 0:
                # Show some examples of differences
                diff_indices = differences[differences].index[:5]
                report_lines.append(f"   Sample differences (first 5):")
                for idx in diff_indices:
                    orig_val = str(original_values.iloc[idx])[:50]
                    opt_val = str(optimized_values.iloc[idx])[:50]
                    report_lines.append(f"   Row {idx}: '{orig_val}' โ†’ '{opt_val}'")
                report_lines.append("")

        # Overall summary
        total_comparisons = len(df_original) * len(self.comparison_columns)
        total_differences = sum([
            (df_original[col].fillna('') != df_optimized[col].fillna('')).sum()
            for col in self.comparison_columns
            if col in df_original.columns and col in df_optimized.columns
        ])

        overall_accuracy = round((1 - total_differences / total_comparisons) * 100, 2)

        report_lines.append("=" * 80)
        report_lines.append(f"OVERALL RESULTS:")
        report_lines.append(f"Total differences: {total_differences}")
        report_lines.append(f"Overall accuracy: {overall_accuracy}%")
        report_lines.append(f"Perfect match: {'Yes' if total_differences == 0 else 'No'}")
        report_lines.append("=" * 80)

        report_text = "\n".join(report_lines)

        if output_file:
            with open(output_file, 'w', encoding='utf-8') as f:
                f.write(report_text)
            print(f"๐Ÿ“„ Report saved to: {output_file}")

        return report_text

    def compare_two_files(
        self, second_file_path: str, report_file: Optional[str] = None
    ) -> bool:
        """
        Compare two CSV files directly

        Args:
            second_file_path: Path to second CSV file to compare
            report_file: Optional report file path

        Returns:
            True if files match perfectly (100% accuracy)
        """
        print("๐Ÿ” Starting file comparison...")

        # Load original data
        df_original = self.load_original_data()

        # Load second file
        try:
            df_second = pd.read_csv(second_file_path)
            print(f"โœ“ Loaded second file: {len(df_second)} rows")
        except Exception as e:
            print(f"โœ— Error loading second file: {e}")
            return False

        # Compare results
        print("๐Ÿ“Š Comparing results...")
        results = self.compare_dataframes(df_original, df_second)

        # Generate report
        if report_file:
            self.generate_difference_report(df_original, df_second, report_file)

        # Print summary
        print("\n" + "="*50)
        print("๐ŸŽฏ COMPARISON SUMMARY")
        print("="*50)
        print(f"Overall accuracy: {results['summary']['overall_accuracy']}%")
        print(f"Perfect match: {'Yes' if results['summary']['perfect_match'] else 'No'}")
        print(f"Total differences: {results['summary']['total_differences']}")

        return results['summary']['perfect_match']


def main():
    """Main function to compare two files"""
    # File paths
    original_file = "data/outputData_original.csv"
    second_file = "data/outputData_api.csv"

    if not os.path.exists(original_file):
        print(f"โŒ Original file not found: {original_file}")
        print("Please ensure the original file exists")
        return

    if not os.path.exists(second_file):
        print(f"โŒ Second file not found: {second_file}")
        print("Please ensure the second file exists")
        return

    # Initialize comparator
    comparator = FileComparator(original_file)

    # Compare files
    is_match = comparator.compare_two_files(second_file, "file_comparison_report.txt")

    if is_match:
        print("๐ŸŽ‰ Files MATCH perfectly!")
    else:
        print("โŒ Files have differences. Check the report for details.")

if __name__ == "__main__":
    main()