Spaces:
Sleeping
Sleeping
with some changes
Browse files- README.md +45 -5
- app.py +157 -24
- requirements.txt +4 -1
README.md
CHANGED
@@ -1,14 +1,54 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: bigscience-openrail-m
|
11 |
-
short_description:
|
12 |
---
|
13 |
|
14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: CodeLlama Code Generator
|
3 |
+
emoji: 🦙
|
4 |
colorFrom: blue
|
5 |
colorTo: green
|
6 |
sdk: gradio
|
7 |
+
sdk_version: 4.19.2
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
license: bigscience-openrail-m
|
11 |
+
short_description: Interactive CodeLlama code generation demo
|
12 |
---
|
13 |
|
14 |
+
# CodeLlama Code Generator
|
15 |
+
|
16 |
+
This is an interactive demo of the CodeLlama-7b model for generating code completions. The application provides a simple interface where you can enter a code prompt and get AI-generated code completions.
|
17 |
+
|
18 |
+
## Features
|
19 |
+
|
20 |
+
- Interactive code generation with CodeLlama-7b
|
21 |
+
- Adjustable parameters (temperature, max length, etc.)
|
22 |
+
- Example prompts to get started quickly
|
23 |
+
- Real-time generation with timing information
|
24 |
+
|
25 |
+
## How to Use
|
26 |
+
|
27 |
+
1. Enter a code prompt in the input box (e.g., a function signature or class definition)
|
28 |
+
2. Adjust the generation parameters if needed:
|
29 |
+
- **Max Length**: Controls the maximum length of the generated text
|
30 |
+
- **Temperature**: Controls randomness (lower = more deterministic)
|
31 |
+
- **Top-p**: Controls diversity via nucleus sampling
|
32 |
+
- **Top-k**: Controls diversity via top-k sampling
|
33 |
+
3. Click "Generate Code" to get your completion
|
34 |
+
4. Try different prompts and parameters to see how they affect the output
|
35 |
+
|
36 |
+
## Examples
|
37 |
+
|
38 |
+
The demo includes several example prompts to help you get started:
|
39 |
+
|
40 |
+
- Function to implement exponential backoff for network pings
|
41 |
+
- Fibonacci sequence implementation
|
42 |
+
- Binary search tree class
|
43 |
+
- Asynchronous data fetching function
|
44 |
+
|
45 |
+
## Technical Details
|
46 |
+
|
47 |
+
This demo uses:
|
48 |
+
- CodeLlama-7b model from Meta
|
49 |
+
- Hugging Face Transformers library
|
50 |
+
- Gradio for the web interface
|
51 |
+
|
52 |
+
## License
|
53 |
+
|
54 |
+
This demo is provided under the BigScience OpenRAIL-M license.
|
app.py
CHANGED
@@ -1,25 +1,158 @@
|
|
1 |
import gradio as gr
|
2 |
-
from transformers import AutoTokenizer
|
3 |
-
|
4 |
-
|
5 |
-
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
def
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
import transformers
|
4 |
+
import torch
|
5 |
+
import os
|
6 |
+
import time
|
7 |
+
|
8 |
+
# Model configuration
|
9 |
+
MODEL_NAME = "meta-llama/CodeLlama-7b-hf"
|
10 |
+
|
11 |
+
# Default example prompts
|
12 |
+
EXAMPLES = [
|
13 |
+
["import socket\n\ndef ping_exponential_backoff(host: str):"],
|
14 |
+
["def fibonacci(n: int) -> int:"],
|
15 |
+
["class BinarySearchTree:\n def __init__(self):"],
|
16 |
+
["async def fetch_data(url: str):"]
|
17 |
+
]
|
18 |
+
|
19 |
+
# Load model with error handling
|
20 |
+
def load_model():
|
21 |
+
try:
|
22 |
+
print("Loading model and tokenizer...")
|
23 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
24 |
+
|
25 |
+
# Configure the pipeline based on available resources
|
26 |
+
# Hugging Face Spaces typically have GPU available
|
27 |
+
pipeline = transformers.pipeline(
|
28 |
+
"text-generation",
|
29 |
+
model=MODEL_NAME,
|
30 |
+
torch_dtype=torch.float16,
|
31 |
+
device_map="auto",
|
32 |
+
)
|
33 |
+
|
34 |
+
print("Model loaded successfully!")
|
35 |
+
return tokenizer, pipeline
|
36 |
+
except Exception as e:
|
37 |
+
print(f"Error loading model: {str(e)}")
|
38 |
+
# Return None to indicate failure
|
39 |
+
return None, None
|
40 |
+
|
41 |
+
# Generate code based on the prompt
|
42 |
+
def generate_code(prompt, max_length=200, temperature=0.1, top_p=0.95, top_k=10):
|
43 |
+
try:
|
44 |
+
# Check if model is loaded
|
45 |
+
if tokenizer is None or pipeline is None:
|
46 |
+
return "Error: Model failed to load. Please check the logs."
|
47 |
+
|
48 |
+
# Add a loading message
|
49 |
+
start_time = time.time()
|
50 |
+
|
51 |
+
# Generate the code
|
52 |
+
sequences = pipeline(
|
53 |
+
prompt,
|
54 |
+
do_sample=True,
|
55 |
+
top_k=top_k,
|
56 |
+
temperature=temperature,
|
57 |
+
top_p=top_p,
|
58 |
+
num_return_sequences=1,
|
59 |
+
eos_token_id=tokenizer.eos_token_id,
|
60 |
+
max_length=max_length,
|
61 |
+
)
|
62 |
+
|
63 |
+
# Calculate generation time
|
64 |
+
generation_time = time.time() - start_time
|
65 |
+
|
66 |
+
# Format the result
|
67 |
+
result = sequences[0]['generated_text']
|
68 |
+
return f"{result}\n\n---\nGeneration time: {generation_time:.2f} seconds"
|
69 |
+
|
70 |
+
except Exception as e:
|
71 |
+
return f"Error generating code: {str(e)}"
|
72 |
+
|
73 |
+
# Load the model and tokenizer
|
74 |
+
print("Initializing CodeLlama...")
|
75 |
+
tokenizer, pipeline = load_model()
|
76 |
+
|
77 |
+
# Create the Gradio interface
|
78 |
+
with gr.Blocks(title="CodeLlama Code Generation") as demo:
|
79 |
+
gr.Markdown("# CodeLlama Code Generation")
|
80 |
+
gr.Markdown("Enter a code prompt and CodeLlama will complete it for you.")
|
81 |
+
|
82 |
+
with gr.Row():
|
83 |
+
with gr.Column():
|
84 |
+
prompt = gr.Textbox(
|
85 |
+
label="Code Prompt",
|
86 |
+
placeholder="Enter your code prompt here...",
|
87 |
+
lines=5
|
88 |
+
)
|
89 |
+
|
90 |
+
with gr.Row():
|
91 |
+
max_length = gr.Slider(
|
92 |
+
minimum=50,
|
93 |
+
maximum=500,
|
94 |
+
value=200,
|
95 |
+
step=10,
|
96 |
+
label="Max Length"
|
97 |
+
)
|
98 |
+
temperature = gr.Slider(
|
99 |
+
minimum=0.1,
|
100 |
+
maximum=1.0,
|
101 |
+
value=0.1,
|
102 |
+
step=0.1,
|
103 |
+
label="Temperature"
|
104 |
+
)
|
105 |
+
|
106 |
+
with gr.Row():
|
107 |
+
top_p = gr.Slider(
|
108 |
+
minimum=0.5,
|
109 |
+
maximum=1.0,
|
110 |
+
value=0.95,
|
111 |
+
step=0.05,
|
112 |
+
label="Top-p"
|
113 |
+
)
|
114 |
+
top_k = gr.Slider(
|
115 |
+
minimum=1,
|
116 |
+
maximum=50,
|
117 |
+
value=10,
|
118 |
+
step=1,
|
119 |
+
label="Top-k"
|
120 |
+
)
|
121 |
+
|
122 |
+
generate_btn = gr.Button("Generate Code")
|
123 |
+
|
124 |
+
with gr.Column():
|
125 |
+
output = gr.Textbox(
|
126 |
+
label="Generated Code",
|
127 |
+
lines=20
|
128 |
+
)
|
129 |
+
|
130 |
+
# Connect the button to the generate function
|
131 |
+
generate_btn.click(
|
132 |
+
fn=generate_code,
|
133 |
+
inputs=[prompt, max_length, temperature, top_p, top_k],
|
134 |
+
outputs=output
|
135 |
+
)
|
136 |
+
|
137 |
+
# Add examples
|
138 |
+
gr.Examples(
|
139 |
+
examples=EXAMPLES,
|
140 |
+
inputs=prompt
|
141 |
+
)
|
142 |
+
|
143 |
+
# Add information about the model
|
144 |
+
gr.Markdown("""
|
145 |
+
## About
|
146 |
+
|
147 |
+
This demo uses the CodeLlama-7b model to generate code completions based on your prompts.
|
148 |
+
|
149 |
+
- **Max Length**: Controls the maximum length of the generated text
|
150 |
+
- **Temperature**: Controls randomness (lower = more deterministic)
|
151 |
+
- **Top-p**: Controls diversity via nucleus sampling
|
152 |
+
- **Top-k**: Controls diversity via top-k sampling
|
153 |
+
|
154 |
+
Created by DheepLearning
|
155 |
+
""")
|
156 |
+
|
157 |
+
# Launch the app
|
158 |
+
demo.launch()
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
transformers==4.39.3
|
2 |
accelerate
|
3 |
-
gradio
|
|
|
|
|
|
|
|
1 |
transformers==4.39.3
|
2 |
accelerate
|
3 |
+
gradio>=4.0.0
|
4 |
+
torch>=2.0.0
|
5 |
+
sentencepiece
|
6 |
+
protobuf
|