Spaces:
Running
Running
orig. files
Browse files- README.md +9 -4
- app.py +276 -0
- female-20-happy.wav +0 -0
- female-46-neutral.wav +0 -0
- male-27-sad.wav +0 -0
- male-60-angry.wav +0 -0
- requirements.txt +5 -0
README.md
CHANGED
@@ -1,13 +1,18 @@
|
|
1 |
---
|
2 |
-
title: Speech
|
3 |
-
emoji:
|
4 |
-
colorFrom:
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.41.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
-
|
|
|
|
|
|
|
|
|
|
|
11 |
---
|
12 |
|
13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: Speech analysis
|
3 |
+
emoji: ⚡
|
4 |
+
colorFrom: gray
|
5 |
colorTo: gray
|
6 |
sdk: gradio
|
7 |
sdk_version: 5.41.1
|
8 |
app_file: app.py
|
9 |
pinned: false
|
10 |
+
license: cc-by-nc-4.0
|
11 |
+
tags:
|
12 |
+
- age
|
13 |
+
- gender
|
14 |
+
- expression
|
15 |
+
- audio
|
16 |
---
|
17 |
|
18 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import typing
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import numpy as np
|
6 |
+
import spaces
|
7 |
+
import torch
|
8 |
+
import torch.nn as nn
|
9 |
+
from transformers import Wav2Vec2Processor
|
10 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2Model
|
11 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import Wav2Vec2PreTrainedModel
|
12 |
+
|
13 |
+
import audiofile
|
14 |
+
import audresample
|
15 |
+
|
16 |
+
|
17 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
18 |
+
duration = 2 # limit processing of audio
|
19 |
+
age_gender_model_name = "audeering/wav2vec2-large-robust-24-ft-age-gender"
|
20 |
+
expression_model_name = "audeering/wav2vec2-large-robust-12-ft-emotion-msp-dim"
|
21 |
+
|
22 |
+
|
23 |
+
class AgeGenderHead(nn.Module):
|
24 |
+
r"""Age-gender model head."""
|
25 |
+
|
26 |
+
def __init__(self, config, num_labels):
|
27 |
+
|
28 |
+
super().__init__()
|
29 |
+
|
30 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
31 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
32 |
+
self.out_proj = nn.Linear(config.hidden_size, num_labels)
|
33 |
+
|
34 |
+
def forward(self, features, **kwargs):
|
35 |
+
|
36 |
+
x = features
|
37 |
+
x = self.dropout(x)
|
38 |
+
x = self.dense(x)
|
39 |
+
x = torch.tanh(x)
|
40 |
+
x = self.dropout(x)
|
41 |
+
x = self.out_proj(x)
|
42 |
+
|
43 |
+
return x
|
44 |
+
|
45 |
+
|
46 |
+
class AgeGenderModel(Wav2Vec2PreTrainedModel):
|
47 |
+
r"""Age-gender recognition model."""
|
48 |
+
|
49 |
+
def __init__(self, config):
|
50 |
+
|
51 |
+
super().__init__(config)
|
52 |
+
|
53 |
+
self.config = config
|
54 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
55 |
+
self.age = AgeGenderHead(config, 1)
|
56 |
+
self.gender = AgeGenderHead(config, 3)
|
57 |
+
self.init_weights()
|
58 |
+
|
59 |
+
def forward(
|
60 |
+
self,
|
61 |
+
input_values,
|
62 |
+
):
|
63 |
+
|
64 |
+
outputs = self.wav2vec2(input_values)
|
65 |
+
hidden_states = outputs[0]
|
66 |
+
hidden_states = torch.mean(hidden_states, dim=1)
|
67 |
+
logits_age = self.age(hidden_states)
|
68 |
+
logits_gender = torch.softmax(self.gender(hidden_states), dim=1)
|
69 |
+
|
70 |
+
return hidden_states, logits_age, logits_gender
|
71 |
+
|
72 |
+
|
73 |
+
class ExpressionHead(nn.Module):
|
74 |
+
r"""Expression model head."""
|
75 |
+
|
76 |
+
def __init__(self, config):
|
77 |
+
|
78 |
+
super().__init__()
|
79 |
+
|
80 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
81 |
+
self.dropout = nn.Dropout(config.final_dropout)
|
82 |
+
self.out_proj = nn.Linear(config.hidden_size, config.num_labels)
|
83 |
+
|
84 |
+
def forward(self, features, **kwargs):
|
85 |
+
|
86 |
+
x = features
|
87 |
+
x = self.dropout(x)
|
88 |
+
x = self.dense(x)
|
89 |
+
x = torch.tanh(x)
|
90 |
+
x = self.dropout(x)
|
91 |
+
x = self.out_proj(x)
|
92 |
+
|
93 |
+
return x
|
94 |
+
|
95 |
+
|
96 |
+
class ExpressionModel(Wav2Vec2PreTrainedModel):
|
97 |
+
r"""speech expression model."""
|
98 |
+
|
99 |
+
def __init__(self, config):
|
100 |
+
|
101 |
+
super().__init__(config)
|
102 |
+
|
103 |
+
self.config = config
|
104 |
+
self.wav2vec2 = Wav2Vec2Model(config)
|
105 |
+
self.classifier = ExpressionHead(config)
|
106 |
+
self.init_weights()
|
107 |
+
|
108 |
+
def forward(self, input_values):
|
109 |
+
outputs = self.wav2vec2(input_values)
|
110 |
+
hidden_states = outputs[0]
|
111 |
+
hidden_states = torch.mean(hidden_states, dim=1)
|
112 |
+
logits = self.classifier(hidden_states)
|
113 |
+
|
114 |
+
return hidden_states, logits
|
115 |
+
|
116 |
+
|
117 |
+
# Load models from hub
|
118 |
+
age_gender_processor = Wav2Vec2Processor.from_pretrained(age_gender_model_name)
|
119 |
+
age_gender_model = AgeGenderModel.from_pretrained(age_gender_model_name)
|
120 |
+
expression_processor = Wav2Vec2Processor.from_pretrained(expression_model_name)
|
121 |
+
expression_model = ExpressionModel.from_pretrained(expression_model_name)
|
122 |
+
|
123 |
+
|
124 |
+
def process_func(x: np.ndarray, sampling_rate: int) -> typing.Tuple[str, dict, str]:
|
125 |
+
r"""Predict age and gender or extract embeddings from raw audio signal."""
|
126 |
+
# run through processor to normalize signal
|
127 |
+
# always returns a batch, so we just get the first entry
|
128 |
+
# then we put it on the device
|
129 |
+
results = []
|
130 |
+
for processor, model in zip(
|
131 |
+
[age_gender_processor, expression_processor],
|
132 |
+
[age_gender_model, expression_model],
|
133 |
+
):
|
134 |
+
y = processor(x, sampling_rate=sampling_rate)
|
135 |
+
y = y['input_values'][0]
|
136 |
+
y = y.reshape(1, -1)
|
137 |
+
y = torch.from_numpy(y).to(device)
|
138 |
+
|
139 |
+
# run through model
|
140 |
+
with torch.no_grad():
|
141 |
+
y = model(y)
|
142 |
+
if len(y) == 3:
|
143 |
+
# Age-gender model
|
144 |
+
y = torch.hstack([y[1], y[2]])
|
145 |
+
else:
|
146 |
+
# Expression model
|
147 |
+
y = y[1]
|
148 |
+
|
149 |
+
# convert to numpy
|
150 |
+
y = y.detach().cpu().numpy()
|
151 |
+
results.append(y[0])
|
152 |
+
|
153 |
+
# Plot A/D/V values
|
154 |
+
plot_expression(results[1][0], results[1][1], results[1][2])
|
155 |
+
expression_file = "expression.png"
|
156 |
+
plt.savefig(expression_file)
|
157 |
+
return (
|
158 |
+
f"{round(100 * results[0][0])} years", # age
|
159 |
+
{
|
160 |
+
"female": results[0][1],
|
161 |
+
"male": results[0][2],
|
162 |
+
"child": results[0][3],
|
163 |
+
},
|
164 |
+
expression_file,
|
165 |
+
)
|
166 |
+
|
167 |
+
|
168 |
+
@spaces.GPU
|
169 |
+
def recognize(input_file: str) -> typing.Tuple[str, dict, str]:
|
170 |
+
# sampling_rate, signal = input_microphone
|
171 |
+
# signal = signal.astype(np.float32, order="C") / 32768.0
|
172 |
+
if input_file is None:
|
173 |
+
raise gr.Error(
|
174 |
+
"No audio file submitted! "
|
175 |
+
"Please upload or record an audio file "
|
176 |
+
"before submitting your request."
|
177 |
+
)
|
178 |
+
|
179 |
+
signal, sampling_rate = audiofile.read(input_file, duration=duration)
|
180 |
+
# Resample to sampling rate supported byu the models
|
181 |
+
target_rate = 16000
|
182 |
+
signal = audresample.resample(signal, sampling_rate, target_rate)
|
183 |
+
|
184 |
+
return process_func(signal, target_rate)
|
185 |
+
|
186 |
+
|
187 |
+
def plot_expression(arousal, dominance, valence):
|
188 |
+
r"""3D pixel plot of arousal, dominance, valence."""
|
189 |
+
# Voxels per dimension
|
190 |
+
voxels = 7
|
191 |
+
# Create voxel grid
|
192 |
+
x, y, z = np.indices((voxels + 1, voxels + 1, voxels + 1))
|
193 |
+
voxel = (
|
194 |
+
(x == round(arousal * voxels))
|
195 |
+
& (y == round(dominance * voxels))
|
196 |
+
& (z == round(valence * voxels))
|
197 |
+
)
|
198 |
+
projection = (
|
199 |
+
(x == round(arousal * voxels))
|
200 |
+
& (y == round(dominance * voxels))
|
201 |
+
& (z < round(valence * voxels))
|
202 |
+
)
|
203 |
+
colors = np.empty((voxel | projection).shape, dtype=object)
|
204 |
+
colors[voxel] = "#fcb06c"
|
205 |
+
colors[projection] = "#fed7a9"
|
206 |
+
ax = plt.figure().add_subplot(projection='3d')
|
207 |
+
ax.voxels(voxel | projection, facecolors=colors, edgecolor='k')
|
208 |
+
ax.set_xlim([0, voxels])
|
209 |
+
ax.set_ylim([0, voxels])
|
210 |
+
ax.set_zlim([0, voxels])
|
211 |
+
ax.set_aspect("equal")
|
212 |
+
ax.set_xlabel("arousal", fontsize="large", labelpad=0)
|
213 |
+
ax.set_ylabel("dominance", fontsize="large", labelpad=0)
|
214 |
+
ax.set_zlabel("valence", fontsize="large", labelpad=0)
|
215 |
+
ax.set_xticks(
|
216 |
+
list(range(voxels + 1)),
|
217 |
+
labels=[0, None, None, None, None, None, None, 1],
|
218 |
+
verticalalignment="bottom",
|
219 |
+
)
|
220 |
+
ax.set_yticks(
|
221 |
+
list(range(voxels + 1)),
|
222 |
+
labels=[0, None, None, None, None, None, None, 1],
|
223 |
+
verticalalignment="bottom",
|
224 |
+
)
|
225 |
+
ax.set_zticks(
|
226 |
+
list(range(voxels + 1)),
|
227 |
+
labels=[0, None, None, None, None, None, None, 1],
|
228 |
+
verticalalignment="top",
|
229 |
+
)
|
230 |
+
|
231 |
+
|
232 |
+
|
233 |
+
description = (
|
234 |
+
"Estimate **age**, **gender**, and **expression** "
|
235 |
+
"of the speaker contained in an audio file or microphone recording. \n"
|
236 |
+
f"The model [{age_gender_model_name}]"
|
237 |
+
f"(https://huggingface.co/{age_gender_model_name}) "
|
238 |
+
"recognises age and gender, "
|
239 |
+
f"whereas [{expression_model_name}]"
|
240 |
+
f"(https://huggingface.co/{expression_model_name}) "
|
241 |
+
"recognises the expression dimensions arousal, dominance, and valence. "
|
242 |
+
)
|
243 |
+
|
244 |
+
with gr.Blocks() as demo:
|
245 |
+
with gr.Tab(label="Speech analysis"):
|
246 |
+
with gr.Row():
|
247 |
+
with gr.Column():
|
248 |
+
gr.Markdown(description)
|
249 |
+
input = gr.Audio(
|
250 |
+
sources=["upload", "microphone"],
|
251 |
+
type="filepath",
|
252 |
+
label="Audio input",
|
253 |
+
min_length=0.025, # seconds
|
254 |
+
)
|
255 |
+
gr.Examples(
|
256 |
+
[
|
257 |
+
"female-46-neutral.wav",
|
258 |
+
"female-20-happy.wav",
|
259 |
+
"male-60-angry.wav",
|
260 |
+
"male-27-sad.wav",
|
261 |
+
],
|
262 |
+
[input],
|
263 |
+
label="Examples from CREMA-D, ODbL v1.0 license",
|
264 |
+
)
|
265 |
+
gr.Markdown("Only the first two seconds of the audio will be processed.")
|
266 |
+
submit_btn = gr.Button(value="Submit")
|
267 |
+
with gr.Column():
|
268 |
+
output_age = gr.Textbox(label="Age")
|
269 |
+
output_gender = gr.Label(label="Gender")
|
270 |
+
output_expression = gr.Image(label="Expression")
|
271 |
+
|
272 |
+
outputs = [output_age, output_gender, output_expression]
|
273 |
+
submit_btn.click(recognize, input, outputs)
|
274 |
+
|
275 |
+
|
276 |
+
demo.launch(debug=True)
|
female-20-happy.wav
ADDED
Binary file (51 kB). View file
|
|
female-46-neutral.wav
ADDED
Binary file (37.6 kB). View file
|
|
male-27-sad.wav
ADDED
Binary file (50.4 kB). View file
|
|
male-60-angry.wav
ADDED
Binary file (60.5 kB). View file
|
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
audiofile
|
2 |
+
audresample
|
3 |
+
matplotlib
|
4 |
+
torch
|
5 |
+
transformers
|