Spaces:
Sleeping
Sleeping
File size: 10,361 Bytes
bf0e217 d572e10 bf0e217 2080e4d 95ac724 bf0e217 2080e4d bf0e217 2080e4d bf0e217 2080e4d bf0e217 2080e4d bf0e217 66f7872 2080e4d 66f7872 95ac724 2080e4d 95ac724 2080e4d 597bbca 2080e4d 95ac724 2080e4d 831ab6e 2080e4d 831ab6e 2080e4d 831ab6e 2080e4d 831ab6e 2080e4d d22fc6f 2080e4d ebdf65e 2080e4d ebdf65e 2080e4d 8e10984 25877a7 2080e4d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import os
import re
from datetime import datetime
import PyPDF2
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification, AutoModelForSeq2SeqLM
from sentence_transformers import SentenceTransformer, util
import gradio as gr
# --- Model Loading with Caching --- #
class ModelCache:
_tokenizers = {}
_models = {}
@classmethod
def get_model(cls, model_name):
if model_name not in cls._models:
cls._models[model_name] = AutoModelForSeq2SeqLM.from_pretrained(model_name)
return cls._models[model_name]
@classmethod
def get_tokenizer(cls, model_name):
if model_name not in cls._tokenizers:
cls._tokenizers[model_name] = AutoTokenizer.from_pretrained(model_name)
return cls._tokenizers[model_name]
# --- PDF/Text Extraction Functions --- #
def extract_text_from_file(file_path):
"""Extracts text from PDF or TXT files based on file extension."""
if file_path.endswith('.pdf'):
return extract_text_from_pdf(file_path)
elif file_path.endswith('.txt'):
return extract_text_from_txt(file_path)
else:
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
def extract_text_from_pdf(pdf_file_path):
"""Extracts text from a PDF file with logging for page extraction."""
text = []
with open(pdf_file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
for i, page in enumerate(pdf_reader.pages):
page_text = page.extract_text()
if page_text:
text.append(page_text)
else:
print(f"Warning: Page {i} could not be extracted.")
return ''.join(text)
def extract_text_from_txt(txt_file_path):
"""Extracts text from a .txt file."""
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
return txt_file.read()
# --- Skill Extraction with Hugging Face --- #
def extract_skills_huggingface(text):
"""Extracts skills from the text using a Hugging Face model."""
model_name = "google/flan-t5-base"
tokenizer = ModelCache.get_tokenizer(model_name)
model = ModelCache.get_model(model_name)
input_text = f"Extract skills from the following text: {text}"
inputs = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(**inputs)
skills = tokenizer.decode(outputs[0], skip_special_tokens=True).split(', ') # Expecting a comma-separated list
return skills
# --- Job Description Processing Function --- #
def process_job_description(text):
"""Extracts skills or relevant keywords from the job description."""
return extract_skills_huggingface(text)
# --- Qualification and Experience Extraction --- #
def extract_qualifications(text):
"""Extracts qualifications from text (e.g., degrees, certifications)."""
qualifications = re.findall(r'\b(bachelor|master|phd|certified|degree|diploma|qualification|certification)\b', text, re.IGNORECASE)
return qualifications if qualifications else ['No specific qualifications found']
def extract_experience(text):
"""Extracts years of experience from the text."""
experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE)
job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE)
experience_years = [int(year[0]) for year in experience_years]
return experience_years, job_titles
# --- Semantic Similarity Calculation --- #
def calculate_semantic_similarity(text1, text2):
"""Calculates semantic similarity using a sentence transformer model and returns the score as a percentage."""
model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
embeddings1 = model.encode(text1, convert_to_tensor=True)
embeddings2 = model.encode(text2, convert_to_tensor=True)
similarity_score = util.pytorch_cos_sim(embeddings1, embeddings2).item()
# Convert similarity score to percentage
similarity_percentage = similarity_score * 100
return similarity_percentage
# --- Thresholds --- #
def categorize_similarity(score):
"""Categorizes the similarity score into thresholds for better insights."""
if score >= 80:
return "High Match"
elif score >= 50:
return "Moderate Match"
else:
return "Low Match"
# --- Communication Generation with Enhanced Response --- #
def communication_generator(resume_skills, job_description_skills, skills_similarity, qualifications_similarity, experience_similarity, max_length=200):
"""Generates a more detailed communication response based on similarity scores."""
model_name = "google/flan-t5-base"
tokenizer = ModelCache.get_tokenizer(model_name)
model = ModelCache.get_model(model_name)
# Assess candidate fit based on similarity scores
fit_status = "strong fit" if skills_similarity >= 80 and qualifications_similarity >= 80 and experience_similarity >= 80 else \
"moderate fit" if skills_similarity >= 50 else "weak fit"
# Create a detailed communication message based on match levels
message = (
f"After a detailed analysis of the candidate's resume, we found the following insights:\n\n"
f"- **Skills Match**: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})\n"
f"- **Qualifications Match**: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})\n"
f"- **Experience Match**: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})\n\n"
f"The overall assessment indicates that the candidate is a {fit_status} for the role. "
f"Skills such as {', '.join(resume_skills)} align {categorize_similarity(skills_similarity).lower()} with the job's requirements of {', '.join(job_description_skills)}. "
f"In terms of qualifications and experience, the candidate shows a {categorize_similarity(qualifications_similarity).lower()} match with the role's needs. "
f"Based on these findings, we believe the candidate could potentially excel in the role, "
f"but additional evaluation or interviews are recommended for further clarification."
)
inputs = tokenizer(message, return_tensors="pt", padding=True, truncation=True)
response = model.generate(**inputs, max_length=max_length, num_beams=4, early_stopping=True)
return tokenizer.decode(response[0], skip_special_tokens=True)
# --- Sentiment Analysis --- #
def sentiment_analysis(text):
"""Analyzes the sentiment of the text using a Hugging Face model."""
model_name = "distilbert-base-uncased-finetuned-sst-2-english"
tokenizer = ModelCache.get_tokenizer(model_name)
model = ModelCache.get_model(model_name)
inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True)
with torch.no_grad():
outputs = model(**inputs)
predicted_sentiment = torch.argmax(outputs.logits).item()
return ["Negative", "Neutral", "Positive"][predicted_sentiment]
# --- Updated Resume Analysis Function --- #
def analyze_resume(resume_file, job_description_file):
"""Analyzes the resume and job description, returning similarity score, skills, qualifications, and experience matching."""
# Extract resume and job description text
try:
resume_text = extract_text_from_file(resume_file.name)
job_description_text = extract_text_from_file(job_description_file.name)
except ValueError as ve:
return str(ve)
# Extract skills, qualifications, and experience
resume_skills = extract_skills_huggingface(resume_text)
job_description_skills = process_job_description(job_description_text)
resume_qualifications = extract_qualifications(resume_text)
job_description_qualifications = extract_qualifications(job_description_text)
resume_experience, resume_job_titles = extract_experience(resume_text)
job_description_experience, job_description_titles = extract_experience(job_description_text)
# Calculate semantic similarity for different sections in percentages
skills_similarity = calculate_semantic_similarity(' '.join(resume_skills), ' '.join(job_description_skills))
qualifications_similarity = calculate_semantic_similarity(' '.join(resume_qualifications), ' '.join(job_description_qualifications))
experience_similarity = calculate_semantic_similarity(' '.join([str(e) for e in resume_experience]), ' '.join([str(e) for e in job_description_experience]))
# Generate a communication response based on the similarity percentages
communication_response = communication_generator(
resume_skills, job_description_skills,
skills_similarity, qualifications_similarity, experience_similarity
)
# Perform Sentiment Analysis
sentiment = sentiment_analysis(resume_text)
# Return the results including thresholds and percentage scores
return (
f"Skills Similarity: {skills_similarity:.2f}% ({categorize_similarity(skills_similarity)})",
f"Qualifications Similarity: {qualifications_similarity:.2f}% ({categorize_similarity(qualifications_similarity)})",
f"Experience Similarity: {experience_similarity:.2f}% ({categorize_similarity(experience_similarity)})",
communication_response,
f"Sentiment Analysis: {sentiment}",
f"Resume Skills: {', '.join(resume_skills)}",
f"Job Description Skills: {', '.join(job_description_skills)}",
f"Resume Qualifications: {', '.join(resume_qualifications)}",
f"Job Description Qualifications: {', '.join(job_description_qualifications)}",
f"Resume Experience: {', '.join(map(str, resume_experience))} years, Titles: {', '.join(resume_job_titles)}",
f"Job Description Experience: {', '.join(map(str, job_description_experience))} years, Titles: {', '.join(job_description_titles)}"
)
# --- Gradio Interface --- #
iface = gr.Interface(
fn=analyze_resume,
inputs=["file", "file"],
outputs=[
"text", "text", "text", "text", "text", "text", "text", "text", "text", "text", "text"
],
title="Resume Analysis Tool",
description="Analyze a resume against a job description to evaluate skills, qualifications, experience, and sentiment."
)
if __name__ == "__main__":
iface.launch()
|