Spaces:
Sleeping
Sleeping
File size: 8,205 Bytes
bf0e217 d572e10 bf0e217 ebdf65e 95ac724 bf0e217 66f7872 95ac724 bf0e217 9708aa4 f97dc11 597bbca bf0e217 95ac724 597bbca 95ac724 597bbca 831ab6e 597bbca 831ab6e 95ac724 831ab6e 9708aa4 831ab6e ff32b52 ebdf65e 25877a7 8e10984 597bbca 831ab6e d22fc6f 831ab6e d30c79b 831ab6e d30c79b 831ab6e d30c79b 831ab6e d30c79b 8e10984 d22fc6f ebdf65e 9708aa4 8e10984 25877a7 831ab6e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 |
import os
import re
from datetime import datetime
import PyPDF2
import torch
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer, util
from groq import Groq
import gradio as gr
# Set your API key for Groq
os.environ["GROQ_API_KEY"] = "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"
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
# --- PDF/Text Extraction Functions --- #
def extract_text_from_file(file_path):
"""Extracts text from PDF or TXT files based on file extension."""
if file_path.endswith('.pdf'):
return extract_text_from_pdf(file_path)
elif file_path.endswith('.txt'):
return extract_text_from_txt(file_path)
else:
raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.")
def extract_text_from_pdf(pdf_file_path):
"""Extracts text from a PDF file."""
with open(pdf_file_path, 'rb') as pdf_file:
pdf_reader = PyPDF2.PdfReader(pdf_file)
text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text())
return text
def extract_text_from_txt(txt_file_path):
"""Extracts text from a .txt file."""
with open(txt_file_path, 'r', encoding='utf-8') as txt_file:
return txt_file.read()
# --- Skill Extraction with Llama Model --- #
def extract_skills_llama(text):
"""Extracts skills from the text using the Llama model via Groq API."""
try:
response = client.chat.completions.create(
messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}],
model="llama3-70b-8192",
)
skills = response.choices[0].message.content.split(', ') # Expecting a comma-separated list
return skills
except Exception as e:
raise RuntimeError(f"Error during skill extraction: {e}")
# --- Job Description Processing Function --- #
def process_job_description(text):
"""Extracts skills or relevant keywords from the job description."""
return extract_skills_llama(text)
# --- Qualification and Experience Extraction --- #
def extract_qualifications(text):
"""Extracts qualifications from text (e.g., degrees, certifications)."""
qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE)
return qualifications if qualifications else ['No specific qualifications found']
def extract_experience(text):
"""Extracts years of experience from the text."""
experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE)
job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE)
experience_years = [int(year[0]) for year in experience_years]
return experience_years, job_titles
# --- Updated Resume Analysis Function --- #
def analyze_resume(resume_file, job_description_file):
if not resume_file or not job_description_file:
return "", "", "", "Please upload both files."
# Load and preprocess resume and job description
resume_text = extract_text_from_file(resume_file)
job_description_text = extract_text_from_file(job_description_file)
# Extract skills, qualifications, and experience from the resume
resume_skills = extract_skills_llama(resume_text)
resume_qualifications = extract_qualifications(resume_text)
resume_experience, _ = extract_experience(resume_text)
total_experience = sum(resume_experience) # Assuming this returns a list of experiences
# Extract required skills, qualifications, and experience from the job description
job_description_skills = process_job_description(job_description_text)
job_description_qualifications = extract_qualifications(job_description_text)
job_description_experience, _ = extract_experience(job_description_text)
required_experience = sum(job_description_experience) # Assuming total years required
# Calculate similarity scores
skills_similarity = len(set(resume_skills).intersection(set(job_description_skills))) / len(job_description_skills) * 100 if job_description_skills else 0
qualifications_similarity = len(set(resume_qualifications).intersection(set(job_description_qualifications))) / len(job_description_qualifications) * 100 if job_description_qualifications else 0
experience_similarity = 1.0 if total_experience >= required_experience else 0.0
# Fit assessment logic
fit_score = 0
if total_experience >= required_experience:
fit_score += 1
if skills_similarity > 50: # Define a threshold for skills match
fit_score += 1
if qualifications_similarity > 50: # Define a threshold for qualifications match
fit_score += 1
# Determine fit
if fit_score == 3:
fit_assessment = "Strong fit"
elif fit_score == 2:
fit_assessment = "Moderate fit"
else:
fit_assessment = "Not a fit"
# Prepare output messages for tab display
summary_message = (
f"### Summary of Analysis\n"
f"- **Skills Similarity**: {skills_similarity:.2f}%\n"
f"- **Qualifications Similarity**: {qualifications_similarity:.2f}%\n"
f"- **Experience Similarity**: {experience_similarity * 100:.2f}%\n"
f"- **Candidate Experience**: {total_experience} years\n"
f"- **Fit Assessment**: {fit_assessment}\n"
)
skills_message = (
f"### Skills Overview\n"
f"- **Resume Skills:**\n" + "\n".join(f" - {skill}" for skill in resume_skills) + "\n"
f"- **Job Description Skills:**\n" + "\n".join(f" - {skill}" for skill in job_description_skills) + "\n"
)
qualifications_message = (
f"### Qualifications Overview\n"
f"- **Resume Qualifications:** " + ", ".join(resume_qualifications) + "\n" +
f"- **Job Description Qualifications:** " + ", ".join(job_description_qualifications) + "\n"
)
experience_message = (
f"### Experience Overview\n"
f"- **Total Experience:** {total_experience} years\n"
f"- **Required Experience:** {required_experience} years\n"
)
return summary_message, skills_message, qualifications_message, experience_message
# --- Gradio Interface --- #
def run_gradio_interface():
with gr.Blocks() as demo:
gr.Markdown("## Resume and Job Description Analyzer")
resume_file = gr.File(label="Upload Resume")
job_description_file = gr.File(label="Upload Job Description")
# Create placeholders for output messages
summary_output = gr.Textbox(label="Summary of Analysis", interactive=False, lines=10)
skills_output = gr.Textbox(label="Skills Overview", interactive=False, lines=10)
qualifications_output = gr.Textbox(label="Qualifications Overview", interactive=False, lines=10)
experience_output = gr.Textbox(label="Experience Overview", interactive=False, lines=10)
# Create tabs for output sections
with gr.Tab("Analysis Summary"):
gr.Markdown("### Summary of Analysis")
summary_output # This automatically renders the output box
with gr.Tab("Skills Overview"):
gr.Markdown("### Skills Overview")
skills_output # This automatically renders the output box
with gr.Tab("Qualifications Overview"):
gr.Markdown("### Qualifications Overview")
qualifications_output # This automatically renders the output box
with gr.Tab("Experience Overview"):
gr.Markdown("### Experience Overview")
experience_output # This automatically renders the output box
analyze_button = gr.Button("Analyze")
# Button action
analyze_button.click(analyze, inputs=[resume_file, job_description_file], outputs=[summary_output, skills_output, qualifications_output, experience_output])
demo.launch()
def analyze(resume, job_desc):
# Always ensure the correct number of return values
summary, skills, qualifications, experience = analyze_resume(resume, job_desc)
return summary, skills, qualifications, experience
if __name__ == "__main__":
run_gradio_interface()
|