import os import re from datetime import datetime import PyPDF2 import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification from sentence_transformers import SentenceTransformer, util from groq import Groq import gradio as gr # Set your API key for Groq os.environ["GROQ_API_KEY"] = "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" client = Groq(api_key=os.environ.get("GROQ_API_KEY")) # --- PDF/Text Extraction Functions --- # def extract_text_from_file(file_path): """Extracts text from PDF or TXT files based on file extension.""" if file_path.endswith('.pdf'): return extract_text_from_pdf(file_path) elif file_path.endswith('.txt'): return extract_text_from_txt(file_path) else: raise ValueError("Unsupported file type. Only PDF and TXT files are accepted.") def extract_text_from_pdf(pdf_file_path): """Extracts text from a PDF file.""" with open(pdf_file_path, 'rb') as pdf_file: pdf_reader = PyPDF2.PdfReader(pdf_file) text = ''.join(page.extract_text() for page in pdf_reader.pages if page.extract_text()) return text def extract_text_from_txt(txt_file_path): """Extracts text from a .txt file.""" with open(txt_file_path, 'r', encoding='utf-8') as txt_file: return txt_file.read() # --- Skill Extraction with Llama Model --- # def extract_skills_llama(text): """Extracts skills from the text using the Llama model via Groq API.""" try: response = client.chat.completions.create( messages=[{"role": "user", "content": f"Extract skills from the following text: {text}"}], model="llama3-70b-8192", ) skills = response.choices[0].message.content.split(', ') # Expecting a comma-separated list return skills except Exception as e: raise RuntimeError(f"Error during skill extraction: {e}") # --- Job Description Processing Function --- # def process_job_description(text): """Extracts skills or relevant keywords from the job description.""" return extract_skills_llama(text) # --- Qualification and Experience Extraction --- # def extract_qualifications(text): """Extracts qualifications from text (e.g., degrees, certifications).""" qualifications = re.findall(r'(bachelor|master|phd|certified|degree)', text, re.IGNORECASE) return qualifications if qualifications else ['No specific qualifications found'] def extract_experience(text): """Extracts years of experience from the text.""" experience_years = re.findall(r'(\d+)\s*(years|year) of experience', text, re.IGNORECASE) job_titles = re.findall(r'\b(software engineer|developer|manager|analyst)\b', text, re.IGNORECASE) experience_years = [int(year[0]) for year in experience_years] return experience_years, job_titles # --- Updated Resume Analysis Function --- # def analyze_resume(resume_file, job_description_file): if not resume_file or not job_description_file: return "", "", "", "Please upload both files." # Load and preprocess resume and job description resume_text = extract_text_from_file(resume_file) job_description_text = extract_text_from_file(job_description_file) # Extract skills, qualifications, and experience from the resume resume_skills = extract_skills_llama(resume_text) resume_qualifications = extract_qualifications(resume_text) resume_experience, _ = extract_experience(resume_text) total_experience = sum(resume_experience) # Assuming this returns a list of experiences # Extract required skills, qualifications, and experience from the job description job_description_skills = process_job_description(job_description_text) job_description_qualifications = extract_qualifications(job_description_text) job_description_experience, _ = extract_experience(job_description_text) required_experience = sum(job_description_experience) # Assuming total years required # Calculate similarity scores skills_similarity = len(set(resume_skills).intersection(set(job_description_skills))) / len(job_description_skills) * 100 if job_description_skills else 0 qualifications_similarity = len(set(resume_qualifications).intersection(set(job_description_qualifications))) / len(job_description_qualifications) * 100 if job_description_qualifications else 0 experience_similarity = 1.0 if total_experience >= required_experience else 0.0 # Fit assessment logic fit_score = 0 if total_experience >= required_experience: fit_score += 1 if skills_similarity > 50: # Define a threshold for skills match fit_score += 1 if qualifications_similarity > 50: # Define a threshold for qualifications match fit_score += 1 # Determine fit if fit_score == 3: fit_assessment = "Strong fit" elif fit_score == 2: fit_assessment = "Moderate fit" else: fit_assessment = "Not a fit" # Prepare output messages for tab display summary_message = ( f"### Summary of Analysis\n" f"- **Skills Similarity**: {skills_similarity:.2f}%\n" f"- **Qualifications Similarity**: {qualifications_similarity:.2f}%\n" f"- **Experience Similarity**: {experience_similarity * 100:.2f}%\n" f"- **Candidate Experience**: {total_experience} years\n" f"- **Fit Assessment**: {fit_assessment}\n" ) skills_message = ( f"### Skills Overview\n" f"- **Resume Skills:**\n" + "\n".join(f" - {skill}" for skill in resume_skills) + "\n" f"- **Job Description Skills:**\n" + "\n".join(f" - {skill}" for skill in job_description_skills) + "\n" ) qualifications_message = ( f"### Qualifications Overview\n" f"- **Resume Qualifications:** " + ", ".join(resume_qualifications) + "\n" + f"- **Job Description Qualifications:** " + ", ".join(job_description_qualifications) + "\n" ) experience_message = ( f"### Experience Overview\n" f"- **Total Experience:** {total_experience} years\n" f"- **Required Experience:** {required_experience} years\n" ) return summary_message, skills_message, qualifications_message, experience_message # --- Gradio Interface --- # def run_gradio_interface(): with gr.Blocks() as demo: gr.Markdown("## Resume and Job Description Analyzer") resume_file = gr.File(label="Upload Resume") job_description_file = gr.File(label="Upload Job Description") # Create placeholders for output messages summary_output = gr.Textbox(label="Summary of Analysis", interactive=False, lines=10) skills_output = gr.Textbox(label="Skills Overview", interactive=False, lines=10) qualifications_output = gr.Textbox(label="Qualifications Overview", interactive=False, lines=10) experience_output = gr.Textbox(label="Experience Overview", interactive=False, lines=10) # Create tabs for output sections with gr.Tab("Analysis Summary"): gr.Markdown("### Summary of Analysis") summary_output # This automatically renders the output box with gr.Tab("Skills Overview"): gr.Markdown("### Skills Overview") skills_output # This automatically renders the output box with gr.Tab("Qualifications Overview"): gr.Markdown("### Qualifications Overview") qualifications_output # This automatically renders the output box with gr.Tab("Experience Overview"): gr.Markdown("### Experience Overview") experience_output # This automatically renders the output box analyze_button = gr.Button("Analyze") # Button action analyze_button.click(analyze, inputs=[resume_file, job_description_file], outputs=[summary_output, skills_output, qualifications_output, experience_output]) demo.launch() def analyze(resume, job_desc): # Always ensure the correct number of return values summary, skills, qualifications, experience = analyze_resume(resume, job_desc) return summary, skills, qualifications, experience if __name__ == "__main__": run_gradio_interface()