File size: 11,255 Bytes
27d90f3 a50c035 27d90f3 a50c035 27d90f3 a50c035 27d90f3 4facd52 baefa5b 4facd52 461464e 4facd52 a50c035 4facd52 62d140d a50c035 27d90f3 62d140d 4facd52 27d90f3 4facd52 27d90f3 4facd52 27d90f3 62d140d 27d90f3 62d140d 27d90f3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
import streamlit as st
import os
from openai import OpenAI
import tempfile
from langchain.chains import ConversationalRetrievalChain
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import (
PyPDFLoader,
TextLoader,
CSVLoader
)
from datetime import datetime
from pydub import AudioSegment
import pytz
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_community.vectorstores import Chroma
from langchain_community.document_loaders import PyPDFLoader, TextLoader, CSVLoader
import os
import tempfile
from datetime import datetime
import pytz
class DocumentRAG:
def __init__(self):
self.document_store = None
self.qa_chain = None
self.document_summary = ""
self.chat_history = []
self.last_processed_time = None
self.api_key = os.getenv("OPENAI_API_KEY") # Fetch the API key from environment variable
self.init_time = datetime.now(pytz.UTC)
if not self.api_key:
raise ValueError("API Key not found. Make sure to set the 'OPENAI_API_KEY' environment variable.")
# Persistent directory for Chroma to avoid tenant-related errors
self.chroma_persist_dir = "./chroma_storage"
os.makedirs(self.chroma_persist_dir, exist_ok=True)
def process_documents(self, uploaded_files, embedding_choice):
"""Process uploaded files by saving them temporarily and extracting content."""
if not self.api_key:
return "Please set the OpenAI API key in the environment variables."
if not uploaded_files:
return "Please upload documents first."
try:
documents = []
for uploaded_file in uploaded_files:
# Save uploaded file to a temporary location
temp_file_path = tempfile.NamedTemporaryFile(
delete=False, suffix=os.path.splitext(uploaded_file.name)[1]
).name
with open(temp_file_path, "wb") as temp_file:
temp_file.write(uploaded_file.read())
# Determine the loader based on the file type
if temp_file_path.endswith('.pdf'):
loader = PyPDFLoader(temp_file_path)
elif temp_file_path.endswith('.txt'):
loader = TextLoader(temp_file_path)
elif temp_file_path.endswith('.csv'):
loader = CSVLoader(temp_file_path)
else:
return f"Unsupported file type: {uploaded_file.name}"
# Load the documents
try:
documents.extend(loader.load())
except Exception as e:
return f"Error loading {uploaded_file.name}: {str(e)}"
if not documents:
return "No valid documents were processed. Please check your files."
# Split text for better processing
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
documents = text_splitter.split_documents(documents)
# Combine text for later summary generation
self.document_text = " ".join([doc.page_content for doc in documents]) # Store for later use
# Create embeddings and initialize retrieval chain
embeddings = OpenAIEmbeddings(api_key=self.api_key)
if embedding_choice == "OpenAI Embeddings":
embeddings = OpenAIEmbeddings(api_key=self.api_key)
else:
embeddings = SentenceTransformerEmbeddings(model_name="NeuML/pubmedbert-base-embeddings")
self.document_store = Chroma.from_documents(
documents,
embeddings,
persist_directory=self.chroma_persist_dir # Persistent directory for Chroma
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
ChatOpenAI(temperature=0, model_name='gpt-4', api_key=self.api_key),
self.document_store.as_retriever(search_kwargs={'k': 6}),
return_source_documents=True,
verbose=False
)
self.last_processed_time = datetime.now(pytz.UTC)
return "Documents processed successfully!"
except Exception as e:
return f"Error processing documents: {str(e)}"
def generate_summary(self, text, language):
"""Generate a clinically relevant summary in the specified language."""
if not self.api_key:
return "API Key not set. Please set it in the environment variables."
try:
client = OpenAI(api_key=self.api_key)
response = client.chat.completions.create(
model="gpt-4",
messages=[
{
"role": "system",
"content": f"""
You are a multilingual clinical AI assistant. Summarize the following medical document (e.g., discharge summary, progress note, or diagnostic report) in **{language}**, preserving all **critical medical information**.
Please ensure the summary includes:
- Patient history (if available)
- Current diagnosis and relevant symptoms
- Medications and treatments administered
- Investigations and results (if mentioned)
- Any follow-up instructions or discharge plans
Use clear, concise language suitable for healthcare professionals. Maintain clinical accuracy and do not hallucinate. Aim for a structured summary under 300 words.
"""
},
{
"role": "user",
"content": text[4000]
}
],
temperature=0.3
)
return response.choices[0].message.content
except Exception as e:
return f"Error generating summary: {str(e)}"
def handle_query(self, question, history, language):
"""Handle user queries in the specified language."""
if not self.qa_chain:
return history + [("System", "Please process the documents first.")]
try:
preface = (
f"Instruction: Respond in {language}. Be professional and concise, "
f"keeping the response under 300 words. If you cannot provide an answer, say: "
f'"I am not sure about this question. Please try asking something else."'
)
query = f"{preface}\nQuery: {question}"
result = self.qa_chain({
"question": query,
"chat_history": [(q, a) for q, a in history]
})
if "answer" not in result:
return history + [("System", "Sorry, an error occurred.")]
history.append((question, result["answer"]))
return history
except Exception as e:
return history + [("System", f"Error: {str(e)}")]
# Initialize RAG system in session state
if "rag_system" not in st.session_state:
st.session_state.rag_system = DocumentRAG()
with st.sidebar:
st.markdown("## About:")
st.markdown(
"""
This prototype is part of a research project – **Multilingual Clinical Text Understanding**.
**Interim Goals:**
1. Summarize clinical notes in local languages
2. Enable question answering over clinical documents using RAG
3. Evaluate performance in under-resourced languages like Bangla,
**Tasks Covered:**
1. Summarization
2. Question Answering
"""
)
st.markdown("## Steps:")
st.markdown(
"""
1. Upload documents
2. Generate summary
3. Ask Questions
4. Log User Interactions
"""
)
st.markdown("## Contributors:")
st.markdown("Azmine Toushik Wasi, Drishti, Prahitha, Anik, Ashay, AbdurRahman, Iqramul")
st.markdown("### References:")
st.markdown("[1. RAG_HW HuggingFace Space](https://huggingface.co/spaces/wint543/RAG_HW)")
# Streamlit UI
st.title("Multilingual Clinical Summarization & QA with RAG")
st.image("./cover_image.png", use_container_width=True)
# Step 1: Upload and Process Documents
st.subheader("Step 1: Upload and Process Documents")
uploaded_files = st.file_uploader("Upload files (PDF, TXT, CSV)", accept_multiple_files=True)
embedding_model_choice = st.radio(
"Choose Embedding Model:",
["OpenAI Embeddings", "PubMedBERT Embeddings"],
horizontal=True,
key="embedding_model_choice"
)
if st.button("Process Documents"):
if uploaded_files:
with st.spinner("Processing documents, please wait..."):
result = st.session_state.rag_system.process_documents(uploaded_files, embedding_model_choice)
if "successfully" in result:
st.success(result)
else:
st.error(result)
else:
st.warning("No files uploaded.")
# Step 2: Generate Summary
st.subheader("Step 2: Generate Summary")
st.write("Select Summary Language:")
summary_language_options = ["English", "Hindi", "Bangla", "Spanish", "French", "German", "Chinese", "Japanese"]
summary_language = st.radio(
"",
summary_language_options,
horizontal=True,
key="summary_language"
)
if st.button("Generate Summary"):
if hasattr(st.session_state.rag_system, "document_text") and st.session_state.rag_system.document_text:
with st.spinner("Generating summary, please wait..."):
summary = st.session_state.rag_system.generate_summary(st.session_state.rag_system.document_text, summary_language)
if summary:
st.session_state.rag_system.document_summary = summary
st.text_area("Document Summary", summary, height=200)
st.success("Summary generated successfully!")
else:
st.error("Failed to generate summary.")
else:
st.info("Please process documents first to generate summary.")
# Step 3: Ask Questions
st.subheader("Step 3: Ask Questions")
st.write("Select Q&A Language:")
qa_language_options = ["English", "Hindi", "Bangla", "Spanish", "French", "German", "Chinese", "Japanese"]
qa_language = st.radio(
"",
qa_language_options,
horizontal=True,
key="qa_language"
)
if st.session_state.rag_system.qa_chain:
history = []
user_question = st.text_input("Ask a question:")
if st.button("Submit Question"):
with st.spinner("Answering your question, please wait..."):
history = st.session_state.rag_system.handle_query(user_question, history, qa_language)
for question, answer in history:
st.chat_message("user").write(question)
st.chat_message("assistant").write(answer)
else:
st.info("Please process documents first to enable Q&A.")
|