Spaces:
Sleeping
Sleeping
File size: 10,482 Bytes
b13c344 c96d49b ebdb8af b13c344 8919ef1 b13c344 17b3852 b13c344 663038b b13c344 cb98dd5 b13c344 369fca6 508b122 17b3852 b13c344 663038b e09a0e3 9cfc436 663038b e09a0e3 663038b 9cfc436 c96d49b 9cfc436 a7b0743 9cfc436 a7b0743 9cfc436 a7b0743 9cfc436 c96d49b 663038b a7b0743 c96d49b 663038b a7b0743 663038b a7b0743 b13c344 a7b0743 663038b a7b0743 663038b a7b0743 b13c344 8edb2bc b13c344 663038b 9cfc436 a7b0743 9cfc436 a7b0743 9cfc436 b13c344 8edb2bc b13c344 c96d49b b13c344 a7b0743 b13c344 a7b0743 b13c344 c96d49b 663038b a7b0743 663038b a7b0743 663038b c96d49b a7b0743 c96d49b a7b0743 c96d49b b13c344 ebdb8af b13c344 a7b0743 c96d49b 9cfc436 a7b0743 9cfc436 a7b0743 9cfc436 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
import os
import re
import json
import traceback
import streamlit as st
from pathlib import Path
from typing import List, Annotated, Any
import chromadb
import operator
import tempfile
from tqdm import tqdm
from pydantic import BaseModel
from langchain.embeddings.cohere import CohereEmbeddings
from langchain_cohere import ChatCohere
from langchain.document_loaders import DirectoryLoader, TextLoader, PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.vectorstores import Chroma
import cohere
from langchain_core.messages import AnyMessage, SystemMessage, HumanMessage, AIMessage
from langgraph.graph import StateGraph, START, END, add_messages
from langgraph.constants import Send
from langgraph.checkpoint.memory import MemorySaver
chromadb.api.client.SharedSystemClient.clear_system_cache()
COHERE_API_KEY = os.environ["COHERE_API_KEY"]
co = cohere.Client(COHERE_API_KEY)
documents_path = Path(__file__).parent / "documents"
persist_dir = tempfile.mkdtemp()
def prepare_vectorstore(uploaded_files=None):
documents = []
if uploaded_files and any(file.size > 0 for file in uploaded_files):
st.write("π Uploaded files:")
for file in uploaded_files:
st.write(f"β’ {file.name} ({file.size} bytes)")
file_path = Path(tempfile.gettempdir()) / file.name
try:
with open(file_path, "wb") as f:
f.write(file.getbuffer())
st.write(f"β
Saved to: {file_path}")
if file.name.endswith(".pdf"):
st.write(f"π Loading PDF: {file.name}")
loader = PyPDFLoader(str(file_path))
elif file.name.endswith(".txt"):
st.write(f"π Loading TXT: {file.name}")
loader = TextLoader(str(file_path))
else:
st.warning(f"Unsupported file type: {file.name}")
continue
loaded = loader.load()
st.write(f"Loaded {len(loaded)} pages from {file.name}")
documents.extend(loaded)
except Exception as e:
st.error(f"Error loading {file.name}:")
st.exception(e)
st.text(traceback.format_exc())
else:
st.warning("No uploaded files found or all were empty.")
st.stop()
if not documents:
st.error("No content could be loaded from the uploaded files.")
st.stop()
st.write("Splitting documents into chunks...")
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=50)
docs = splitter.split_documents(documents)
st.write(f"Total chunks created: {len(docs)}")
if not docs:
st.error("No content found in the documents after splitting.")
st.stop()
st.write("Embedding documents...")
embedding = CohereEmbeddings(
model="embed-multilingual-light-v3.0",
cohere_api_key=COHERE_API_KEY,
user_agent="langgraph-app"
)
try:
vectorstore = Chroma.from_documents(
documents=tqdm(docs, desc="Embedding"),
embedding=embedding,
persist_directory=persist_dir
)
vectorstore.persist()
st.success("Document embedding complete.")
return vectorstore
except Exception as e:
st.error("Embedding failed:")
st.exception(e)
st.text(traceback.format_exc())
st.stop()
class State(BaseModel):
state: List[str] = []
messages: Annotated[list[AnyMessage], add_messages]
topic: List[str] = []
context: List[str] = []
sub_topic_list: List[str] = []
sub_topics: Annotated[list[AnyMessage], add_messages]
stories: Annotated[list[AnyMessage], add_messages]
stories_lst: Annotated[list, operator.add]
class StoryState(BaseModel):
retrieved_docs: List[Any] = []
stories: Annotated[list[AnyMessage], add_messages]
reranked_docs: List[str] = []
story_topic: str = ""
stories_lst: Annotated[list, operator.add]
def extract_topics(messages):
topics = []
for message in messages:
topics.extend(re.findall(r'- \*\*(.*?)\*\*', message.content))
return topics
embedding_llm = CohereEmbeddings(
model="embed-multilingual-light-v3.0",
cohere_api_key=COHERE_API_KEY,
user_agent="langgraph-app"
)
llm = ChatCohere(
api_version="2024-02-15-preview",
temperature=0.7,
model="command-r-plus-08-2024",
cohere_api_key=COHERE_API_KEY
)
beginner_topic_sys_msg = SystemMessage(content="Suppose you are a middle grader who wants to learn constantly about new topics to get a good score in exams.")
middle_topic_sys_msg = SystemMessage(content="Suppose you are a college student who wants to learn constantly about new topics to get a good score in exams.")
advanced_topic_sys_msg = SystemMessage(content="Suppose you are a teacher who wants to learn constantly about new topics to teach your students.")
def retrieve_node(state):
topic = state.story_topic
query = f"information about {topic}"
retriever = Chroma(persist_directory=persist_dir, embedding_function=embedding_llm).as_retriever(search_kwargs={"k": 20})
docs = retriever.get_relevant_documents(query)
return {"retrieved_docs": docs, "question": query}
def rerank_node(state):
topic = state.story_topic
query = f"Rerank documents based on how good they explain the topic {topic}"
docs = state.retrieved_docs
texts = [doc.page_content for doc in docs]
rerank_results = co.rerank(query=query, documents=texts, top_n=5, model="rerank-v3.5")
top_docs = [texts[result.index] for result in rerank_results.results]
return {"reranked_docs": top_docs, "question": query}
def generate_story_node(state):
context = "\n\n".join(state.reranked_docs)
topic = state.story_topic
system_message = """
Suppose you're an amazing story writer and scientific thinker.
You've written hundreds of story books explaining scientific topics in a childlike manner.
You add a subtle humor to your stories to make them more engaging.
"""
prompt = f"""
Use the following context to generate a simple engaging story that explains {topic} in such a way a middle schooler can understand it.
Context:
{context}
Story:
"""
response = llm.invoke([SystemMessage(system_message), HumanMessage(prompt)])
return {"stories": response}
def beginner_topic(state: State):
prompt = f"What are the beginner-level topics you can learn about {', '.join(state.topic)} in {', '.join(state.context)}?"
sub_topics = [llm.invoke([beginner_topic_sys_msg] + [prompt])]
return {"message": sub_topics[0], "sub_topics": sub_topics[0]}
def middle_topic(state: State):
prompt = f"What are the middle-level topics you can learn about {', '.join(state.topic)} in {', '.join(state.context)}? Don't include the topics below:\n\n{(state.sub_topics)}"
sub_topics = [llm.invoke([middle_topic_sys_msg] + [prompt])]
return {"message": sub_topics, "sub_topics": sub_topics}
def advanced_topic(state: State):
prompt = f"What are the advanced-level topics you can learn about {', '.join(state.topic)} in {', '.join(state.context)}? Don't include the topics below:\n\n{(state.sub_topics)}"
sub_topics = [llm.invoke([advanced_topic_sys_msg] + [prompt])]
return {"message": sub_topics, "sub_topics": sub_topics}
def topic_extractor(state: State):
return {"sub_topic_list": extract_topics(state.sub_topics)}
def dynamic_topic_edges(state: State):
return [Send("story_generator", {"story_topic": topic}) for topic in state.sub_topic_list]
story_builder = StateGraph(StoryState)
story_builder.add_node("Retrieve", retrieve_node)
story_builder.add_node("Rerank", rerank_node)
story_builder.add_node("Generate", generate_story_node)
story_builder.set_entry_point("Retrieve")
story_builder.add_edge("Retrieve", "Rerank")
story_builder.add_edge("Rerank", "Generate")
story_builder.set_finish_point("Generate")
story_graph = story_builder.compile()
main_builder = StateGraph(State)
main_builder.add_node("beginner_topic", beginner_topic)
main_builder.add_node("middle_topic", middle_topic)
main_builder.add_node("advanced_topic", advanced_topic)
main_builder.add_node("topic_extractor", topic_extractor)
main_builder.add_node("story_generator", story_graph)
main_builder.add_edge(START, "beginner_topic")
main_builder.add_edge("beginner_topic", "middle_topic")
main_builder.add_edge("middle_topic", "advanced_topic")
main_builder.add_edge("advanced_topic", "topic_extractor")
main_builder.add_conditional_edges("topic_extractor", dynamic_topic_edges, ["story_generator"])
main_builder.add_edge("story_generator", END)
memory = MemorySaver()
react_graph = main_builder.compile(checkpointer=memory, interrupt_after=["topic_extractor"])
st.title("LangGraph Topic Story Generator")
uploaded_files = st.file_uploader(
"Upload .txt or .pdf files",
type=["txt", "pdf"],
accept_multiple_files=True,
key="file_uploader"
)
if uploaded_files:
st.session_state["files"] = uploaded_files
st.success(f"{len(uploaded_files)} file(s) uploaded:")
for file in uploaded_files:
st.write(f"β’ {file.name} ({file.size} bytes)")
elif "files" in st.session_state:
st.info("Using previously uploaded files:")
for file in st.session_state["files"]:
st.write(f"β’ {file.name} ({file.size} bytes)")
else:
st.info("No files uploaded yet.")
topic = st.text_input("Enter a topic", "Human Evolution")
context = st.text_input("Enter a context", "Science")
if st.button("Generate Stories"):
uploaded = st.session_state.get("files")
if not uploaded or all(file.size == 0 for file in uploaded):
st.warning("You uploaded files, but they appear to be empty.")
st.stop()
try:
prepare_vectorstore(uploaded)
thread = {"configurable": {"thread_id": "1"}}
react_graph.invoke({"topic": [topic], "context": [context]}, thread)
react_graph.update_state(thread, {"sub_topic_list": ['Early Hominins', 'Fossil Evidence', "Darwin's Theory of Evolution"]})
result = react_graph.invoke(None, thread, stream_mode="values")
for story in result["stories"]:
st.markdown(story.content)
except Exception as e:
st.error("Something went wrong during story generation.")
st.exception(e)
st.text(traceback.format_exc())
|